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1 Introduction

In this article, we consider the stochastic heat equation:

⎧
⎨

⎩

∂u

∂t
(t, x) = 1

2
�u(t, x) + λu(t, x)Ẇ (t, x), t > 0, x ∈ R

d ,

u(0, ·) = u0(·),
(1.1)

with λ ∈ R, driven by a zero-mean Gaussian noise Ẇ defined on a probability space
(�,F ,P), whose covariance is given informally by:

E
[
Ẇ (t, x)Ẇ (s, y)

] = γ (t − s) f (x − y), (1.2)

for some nonnegative and nonnegative definite functions γ and f . The functions γ and
f are the Fourier transforms (in the sense of distributions) of two tempered measures
ν, respectively μ, and hence the noise is homogeneous in both time and space, i.e., its
covariance is invariant under translations. The wave equation with the same type of
noise and constant initial conditions has been recently studied in [2].

This problem is known in the literature as the Parabolic Anderson Model, which
refers to the fact that the noise enters the equation multiplied by the function σ(u) =
λu. We are interested in the existence and properties of the random-field solution
u = {u(t, x); t > 0, x ∈ R

d} of Eq. (1.1) interpreted in the Skorohod sense. This
means that the solution is defined using a stochastic integral corresponding to the
divergence operator from Malliavin calculus. We refer the reader to Sect. 2 below for
the rigorous definition of the noise and the solution. The novelty of our investigations
lies in the fact that we consider initial data given by a signed Borel measure u0 on Rd ,
which satisfies the condition:

∫

Rd
e−a|x |2 |u0|(dx) < ∞ for all a > 0, (1.3)

where |x | = (x21 +· · ·+ x2d )1/2. Here |u0| := u0,+ +u0,−, where u0 = u0,+ −u0,− is
the Jordan decomposition and u0,± are two nonnegative Borel measures with disjoint
support.

The parabolic Anderson model was originally studied in [4] in the case when d = 1
and Ẇ is replaced by a space-time white noise. In the recent years, there has been
a lot of interest in studying the solutions of stochastic partial differential equations
(s.p.d.e.’s) driven by a more general Gaussian noise. When the noise is white in time
(i.e., the noise behaves in time like a Brownian motion, so that informally, γ = δ0,
where δ0 is the Dirac distribution at 0), the stochastic integral used in the definition of
the solution can be constructed similarly to Itô’s integral, using martingale techniques.
In this case, it is known from [11] that a large class of s.p.d.e.’s have random-field
solutions, under Dalang’s condition:

ϒ(β) := (2π)−d
∫

Rd

μ(dξ)

β + |ξ |2 < +∞ for some (and hence for all) β > 0, (1.4)
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where μ is the spectral measure of the noise in space (defined by (2.1) below).
This class includes the heat and wave equations with a Lipschitz nonlinear func-
tion σ(u) multiplying the noise. These equations have been studied extensively
and their solutions possess many interesting properties (see [12–14,22,23] for a
sample of relevant references). Most of these properties have been derived for ini-
tial conditions given by functions satisfying certain regularity conditions. Recently,
some of these properties have been extended to rough initial data (such as Borel
measures on R

d ), in the case of the heat equation driven by a space-time white
noise (see [5,6]), or even a Gaussian noise which is white in time and colored
in space (see [8,10]). The recent preprint [17] carefully analyzes the solution to
the Parabolic Anderson Model driven by a Gaussian noise which is white in time
and behaves in space either like Dalang’s type noise, or like a fractional Brownian
motion with H ∈ ( 14 ,

1
2 ] (when d = 1). Moreover, in [17] it is assumed that the

initial data is given by a function u0 which satisfies (1.3) with u0(dx) replaced by
u0(x)dx .

In the present article, we build upon this theory, by studying the parabolic Ander-
son model driven by a Gaussian noise, which is correlated also in time, with temporal
covariance kernel given by a locally integrable function γ . An example which received
a lot of attention in the literature is γ (t) = H(2H − 1)|t |2H−2 with H ∈ ( 12 , 1). In
this case, the noise behaves in time like a fractional Brownian motion with index
H , and the stochastic integral used for defining the solution has to be constructed
using different techniques (usually, Malliavin calculus). The major difficulty is to
show that the sequence of Picard iterations converges. This remains an open problem,
in the case of equations containing a Lipshitz nonlinear function σ(u) multiplying
the noise. However, as observed in [15], this problem has a surprisingly simple solu-
tion when σ(u) = λu. In this case, the solution has an explicit series representation
(given by its Wiener chaos expansion), and the necessary and sufficient condition for
the existence (and uniqueness) of the solution is that this series converges in L2(�).
This method yields immediately an upper bound for the p-the moment of the solu-
tion, using the equivalence of the L p(�)-norms on the same Wiener chaos space.
When the initial condition is given by a bounded function, this technique was used
to investigate the properties of the solutions (see for instance [1,9,16]). In [9], the
heat operator was replaced by general fractional operators in both time and space
variables.

The goal of this article is to use the same method based onWiener chaos expansion
to prove the existence of the solution of Eq. (1.1), with initial data given by a signed
measure u0 satisfying (1.3). In particular, Dirac delta initial data was used in the theory
of Borodin, Corwin and their coauthors for equations driven by space-timewhite noise
in spatial dimension d = 1 (see, e.g., [3]). Since the initial data plays an important
role in the form of the kernels fn(·, t, x) appearing in the series representation of
the solution u(t, x) (see (2.7) below), new ideas are required to show that this series
converges in L2(�). This leads to calculations that deviate significantly from the case
of bounded initial conditions. The starting point of these calculations is an elementary
result borrowed from [6] (see Lemma 2.4 below), which is specific to the heat equation.
In fact, fn(·, t, x) depends on u0 through the solution J0 of the homogeneous heat
equation with initial data u0, defined by:
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J0(t, x) =
∫

Rd
G(t, x − y)u0(dy), (1.5)

where G(t, x) the fundamental solution of the heat equation in Rd :

G(t, x) = 1

(2π t)d/2 exp

(

−|x |2
2t

)

, t > 0, x ∈ R
d .

Therefore, (1.3) is the weakest condition one has to impose on u0 to ensure that the
series converges. To see this, it suffices to note that the first term of the series is J0(t, x),
and |J0(t, x)| ≤ J+(t, x), where

J+(t, x) =
∫

Rd
G(t, x − y)|u0|(dy). (1.6)

A simple argument shows that condition (1.3) is equivalent to

J+(t, x) < +∞ for all t > 0 and x ∈ R
d .

After establishing the existence of the solution, we proceed to a careful analysis of
the order of magnitude of the p-th moments of the solution. This investigation reveals
that we have to distinguish between two different scenarios. When γ is integrable on
R, under a slightly stronger requirement on u0 (given by (1.10) below), we show that
E|u(t, x)|p ≤ c1 exp(c2t) for t large, uniformly in x ∈ R

d , regardless of the spatial
covariance kernel f . In this case, the smoothness of the noise in time overcomes both
the roughness of the noise in space and the roughness of the initial data, leading to the
same behavior of the solution as in the case of equations with space-time white noise
and bounded initial condition. On the other hand, if f is the Riesz kernel of order
α,E|u(t, x)|p ≤ c1 J p

+(t, x) exp(c2�
2/(2−α)
t t), where

�t :=
∫ t

−t
γ (s)ds = 2

∫ t

0
γ (s)ds. (1.7)

In this case, the behavior of the solution retains all the characteristics of the noise,
combined with the roughness of the initial data.

Proving that the solution is L p(�)-continuous relies on some technical arguments,
which we placed in “Appendix B” to preserve the natural reading flow. Finally, in the
last part of the article, we prove that the solution to Eq. (1.1) has a Hölder continuous
modification, with the same orders of regularity and under the same condition on the
spectral measure μ, as in the case of equations with white noise in time. This shows
that neither the correlation of the noise in time, nor the initial data affects the sample
path regularity of the solution. A similar fact was observed in [2] in the case of the
wave equation with constant initial conditions. The proof of this result follows from
Kolmogorov’s continuity criterion, by refining the bounds obtained in “Appendix B”
for the p-th moments of the increments of the solution.
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The main results of this article are summarized by the following three theorems.
We let ||·||p be the L p(�)-norm. The rigorous meaning of solution is given by Defi-
nition 2.2 below.

Theorem 1.1 Assume that Dalang’s condition (1.4) holds.

(a) Then, for any Borel measure u0 on R
d that satisfies (1.3), Eq. (1.1) gives a unique

random-field solution
{
u(t, x) : t > 0, x ∈ R

d
}
. For any p ≥ 2,

||u(t, x)||p ≤ J+(t, x) H̃
(

t; 2λ2(p − 1)�t

)
, (1.8)

where �t is defined in (1.7) and H̃(t; γ ) is defined in (3.14) below. In particular,
for any a > 1,

sup
(t,x)∈Ka

E
(|u(t, x)|p) < ∞, (1.9)

where Ka = [1/a, a]× [−a, a]d . Moreover, u is L p(�)-continuous on (0,∞)×
R

d for all p ≥ 2.
(b) If γ ∈ L1(R), i.e., �∞ := limt→∞ �t < ∞, and the initial measure u0 satisfies

∫

Rd
e−β|x ||u0|(dx) < ∞ for all β > 0, (1.10)

then for all p ≥ 2,

sup
x∈Rd

lim sup
t→∞

1

t
log ||u(t, x)||p ≤ inf

{

β > 0 : ϒ(2β) <
[
4λ2(p − 1)�∞

]−1
}

.

(c) Assume that γ ∈ L1(R) and the initial measure u0 satisfies (1.10). If

ϒ(0) := lim
β→0

ϒ(β) < ∞ (1.11)

(which happens only when d ≥ 3), then there exists some critical value λc > 0
such that when |λ| < λc,

sup
x∈Rd

lim sup
t→∞

1

t
log ||u(t, x)||p = 0.

Theorem 1.2 Suppose that μ(dξ) = |ξ |−(d−α)dξ for some 0 < α < d ∧ 2
and the initial measure u0 satisfies (1.3). Then Eq. (1.1) has a unique solution{
u(t, x); t > 0, x ∈ R

d
}

which satisfies the following moment bound:

E
[|u(t, x)|p] ≤ C p J p

+(t, x) exp
(

Cp(4−α)/(2−α)|λ|4/(2−α)�
2/(2−α)
t t

)
, (1.12)

for all p ≥ 2, t > 0 and x ∈ R
d , where C > 0 is some universal constant.
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Theorem 1.3 Let u be the solution of Eq. (1.1) starting from an initial measure u0
that satisfies (1.3). Suppose that:

∫

Rd

(
1

1 + |ξ |2
)β

μ(dξ) < ∞ for some β ∈ (0, 1). (1.13)

Then for any p ≥ 2 and a > 1 there exists a constant C > 0 depending on p, a, λ

and β such that for any (t, x), (t ′, x ′) ∈ Ka := [1/a, a] × [−a, a]d ,

‖u(t, x) − u(t ′, x ′)‖p ≤ C
(
|t − t ′| 1−β

2 + |x − x ′|1−β
)

.

Consequently, for any a > 1, the process {u(t, x); (t, x) ∈ Ka} has a modification
which is a.s. θ1-Hölder continuous in time and a.s. θ2-Hölder continuous in space, for
any θ1 ∈ (0, (1 − β)/2) and θ2 ∈ (0, 1 − β).

Remark 1.4 (a) The proof of Theorem 1.1.(a) shows that, for any p ≥ 2 and T > 0,

sup
(t,x)∈[0,T ]×Rd

‖u(t, x)‖p ≤ Cλ,p,T sup
(t,x)∈[0,T ]×Rd

J+(t, x) ≤ +∞, (1.14)

whereCλ,p,T > 0 is a constantwhich depends onλ, p and T . If u0(dx) = u0(x)dx
and u0 is bounded, then sup(t,x)∈[0,T ]×Rd J+(t, x) < ∞. But there are many
examples of measures u0, such as u0 = δ0 and u0(dx) = |x |2dx , for which
sup(t,x)∈[0,T ]×Rd J+(t, x) = ∞.

(b) When u0(dx) = adx for somea > 0 andγt = H(2H−1)|t |2H−2 for H ∈ ( 12 , 1),
the upper bound given by Theorem 1.2 coincides with the one of Proposition
8.1.(b) of [1].

(c) In the case of the white noise in time, the Hölder regularity of the solution of
the heat equation with initial condition given by u0(dx) = u0(x)dx (with u0 a
bounded and Hölder continuous function) was obtained in [22] under the same
condition (1.13) and with the same exponents as in Theorem 1.3. This result has
been recently extended in [8] to the case of initial data given by a signed measure
u0 satisfying (1.3). In [5], it was shown that the solution of the heat equation
with space-time white noise and initial data satisfying (1.3) has a modification
which is θ1-Hölder continuous in time and θ2-Hölder continuous in space, for any
θ1 ∈ (0, 1

4 ) and θ2 ∈ (0, 1
2 ). This is consistent with the conclusion of Theorem1.3,

since for the space-time white noise, d = 1, μ(dξ) = dξ , and condition (1.13)
holds for β = 1/2 + ε with ε > 0 arbitrary.

(d) Finding a nontrivial lower bound for the secondmoment of the solution toEq. (1.1)
when the initial condition is the Dirac delta measure is an extremely challenging
problem. We postpone this for future work. When the noise is white in time, a
nontrivial lower bound has been recently obtained in [10].

We conclude the introduction with few words about the organization of the article
and the notation. In Sect. 2, we introduce the background material necessary for the
rigorous formulation of the problem. Section 3 is dedicated to the proof ofTheorem1.1,
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while Theorems 1.2 and 1.3 are proved in Sects. 4 and 5, respectively. The appendix
contains the proofs of some technical results.

Throughout this article, we denote byD(Rd) the set ofC∞-functions with compact
support inRd , and S(Rd) the set of Schwartz test functions onRd , i.e., C∞-functions
with rapid decrease at infinity along with all partial derivatives. We let SC(Rd) be
the set of C-valued Schwartz test functions on R

d , and S ′
C
(Rd) be its dual space.

We denote by L1
C
(Rd) the space of C-valued integrable functions on Rd . The Fourier

transform of a function ϕ ∈ L1
C
(Rd) is defined by:

Fϕ(ξ) =
∫

Rd
e−iξ ·xϕ(x)dx, ξ ∈ R

d .

We say that a measure μ on R
d is tempered if

∫

Rd

(
1

1 + |ξ |2
)k

μ(dξ) < ∞ for some k > 0.

2 Background

In this section,we introduce the definitions of the noise and solution, review some basic
facts of Malliavin calculus, and give some preliminary results related to the existence
of the solution, with emphasis on the Wiener chaos expansion of the solution.

We begin by recalling the definition of the noise from [2]. We assume that W =
{W (ϕ) : ϕ ∈ D(R × R

d)} is a zero-mean Gaussian process, defined on a probability
space (�,F ,P), with covariance

E[W (ϕ1)W (ϕ2)] =
∫

R2×R2d
γ (t − s) f (x − y)ϕ1(t, x)ϕ2(s, y)dxdydtds

=: J (ϕ1, ϕ2),

where γ : R → [0,∞] and f : Rd → [0,∞] are continuous, symmetric, locally
integrable functions, such that

γ (t) < ∞ if and only if t 
= 0,

f (x) < ∞ if and only if x 
= 0.

We denote by H the completion of D(R × R
d) with respect to 〈·, ·〉H defined by

〈ϕ1, ϕ2〉H = J (ϕ1, ϕ2).

We are mostly interested in variables W (ϕ) with ϕ ∈ D(R+ × R
d).
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We assume that the functions γ and f are nonnegative definite (in the sense of
distributions), i.e., for any φ ∈ S(R) and ϕ ∈ S(Rd),

∫

R

(φ ∗ φ̃)(t)γ (t)dt ≥ 0 and
∫

Rd
(ϕ ∗ ϕ̃)(x) f (x)dx ≥ 0.

By the Bochner–Schwartz Theorem, there exists a tempered measure ν on R such
that γ is the Fourier transform of ν in S ′

C
(R), i.e.,

∫

Rd
φ(t)γ (t)dt = 1

2π

∫

R

Fφ(τ)ν(dτ) for all φ ∈ SC(R).

Similarly, there exists a temperedmeasureμ onRd such that f is the Fourier transform
of μ in S ′

C
(Rd), i.e.,

∫

Rd
ϕ(x) f (x)dx = 1

(2π)d

∫

Rd
Fϕ(ξ)μ(dξ) for all ϕ ∈ SC(Rd). (2.1)

It follows that for any functions φ1, φ2 ∈ SC(R) and ϕ1, ϕ2 ∈ SC(Rd)

∫

R

∫

R

γ (t − s)φ1(t)φ2(s)dtds = 1

2π

∫

R

Fφ1(τ )Fφ2(τ )ν(dτ) (2.2)

and
∫

Rd

∫

Rd
f (x − y)ϕ1(x)ϕ2(y)dxdy = 1

(2π)d

∫

Rd
Fϕ1(ξ)Fϕ2(ξ)μ(dξ). (2.3)

The next result shows that the functional J is nonnegative definite.

Lemma 2.1 (Lemma 2.1 of [2]) For any ϕ1, ϕ2 ∈ D(R × R
d), we have:

J (ϕ1, ϕ2) = 1

(2π)d+1

∫

Rd+1
Fϕ1(τ, ξ)Fϕ2(τ, ξ)ν(dτ)μ(dξ), (2.4)

where F denotes the Fourier transform in both variables t and x. In particular, J is
nonnegative definite.

At this point, we need to introduce some basic facts fromMalliavin calculus, which
are necessary for defining the solution to Eq. (1.1). We refer the reader to [19] for
more details. It is known that every square-integrable random variable F which is
measurable with respect to W , has the Wiener chaos expansion:

F = E(F) +
∑

n≥1

Fn with Fn ∈ Hn,

where Hn is the n-th Wiener chaos space associated with W . Moreover, each Fn can
be represented as Fn = In( fn) for some fn ∈ H⊗n , where H⊗n is the n-th tensor

123



J Theor Probab

product of H and In : H⊗n → Hn is the multiple Wiener integral with respect to W .
By the orthogonality of the Wiener chaos spaces and an isometry-type property of In ,
we obtain that

E(|F |2) = (EF)2 +
∑

n≥1

E(|In( fn)|2) = (EF)2 +
∑

n≥1

n!‖ f̃n‖2H⊗n ,

where f̃n is the symmetrization of fn in all n variables:

f̃n(t1, x1, . . . , tn, xn) = 1

n!
∑

ρ∈Sn

fn(tρ(1), xρ(1), . . . , tρ(n), xρ(n)).

Here Sn is the set of all permutations of {1, . . . , n}. We note that the space H⊗n may
contain distributions in S ′(Rn(d+1)).

We denote by δ : Dom(δ) ⊂ L2(�;H) → L2(�) the divergence operator with
respect to W , defined as the adjoint of the Malliavin derivative D with respect to W .
If u ∈ Dom δ, we use the notation

δ(u) =
∫ ∞

0

∫

Rd
u(t, x)W (δt, δx),

and we say that δ(u) is the Skorohod integral of u with respect to W . In particular,
E[δ(u)] = 0.

We are now ready to give the definition of the solution to Eq. (1.1).

Definition 2.2 Wesay that a process u = {u(t, x); t ≥ 0, x ∈ R
d} is a (mild) solution

of Eq. (1.1) if for any t > 0 and x ∈ R
d , u(t, x) is Ft -measurable, E |u(t, x)|2 < ∞

and the following integral equation holds:

u(t, x) = J0(t, x) +
∫ t

0

∫

Rd
G(t − s, x − y)u(s, y)W (δs, δy), (2.5)

i.e., v(t,x) ∈ Dom δ and u(t, x) = J0(t, x)+ δ(v(t,x)) for all (t, x) ∈ R+ ×R
d , where

v(t,x)(s, y) = 1[0,t](s)G(t − s, x − y)u(s, y), s ≥ 0, y ∈ R
d . (2.6)

We now state (without proof) a well-known criterion for the existence and unique-
ness of this solution, expressed as the convergence in L2(�) of a series of multiple
integrals. This result is essentially due to [15] (for a slightly different noise than here).
In its present form, it is similar to Theorem 2.9 of [2] (for the wave equation). We
define the kernel function fn(·, t, x) by:

fn(t1, x1, . . . , tn, xn, t, x) = λnG(t − tn, x − xn) . . . G(t2 − t1, x2 − x1)

× J0(t1, x1)1{0<t1<···<tn<t}. (2.7)

Theorem 2.3 Suppose that fn(·, t, x) ∈ H⊗n for any t > 0, x ∈ R
d and n ≥ 1. Then

Eq. (1.1) gives a solution if and only if for any t > 0 and x ∈ R
d ,
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the series
∑

n≥0

In( fn(·, t, x)) converges in L2(�).

In this case, the solution is unique and is given by:

u(t, x) =
∑

n≥0

Jn(t, x), with Jn(t, x) = In( fn(·, t, x)).

To show that the kernel fn(·, t, x) is in H⊗n we need an alternative expression of
this kernel, which is obtained as follows. Suppose that 0 < t1 < · · · < tn < t . Using
the definition of J0(t1, x1), we see that

fn(t1, x1, . . . , tn, xn, t, x) = λn
∫

Rd
G(t − tn, x − xn) . . .

G(t2 − t1, x2 − x1)G(t1, x1 − x0)u0(dx0).

The key idea (and the starting point of our developments) is to express the product
G(t2 − t1, x2 − x1)G(t1, x1 − x0) above using the following result, whose proof is
based on the specific form of the heat kernel G.

Lemma 2.4 (Lemma A.4 of [6]) For t, s > 0 and x, y ∈ R
d ,

G(t, x)G(s, y) = G

(
ts

t + s
,

sx + t y

t + s

)

G(t + s, x − y).

Consequently, we obtain that

fn(t1, x1, . . . , tn, xn, t, x) = λn
∫

Rd
G(t − tn, x − xn) . . .

G(t3 − t2, x3 − x2)G(t2, x2 − x0)

× G

((

1 − t1
t2

)

t1,

(

1 − t1
t2

)

x0 + t1
t2

x2 − x1

)

u0(dx0).

We now express the product G(t3 − t2, x3 − x2)G(t2, x2 − x0) using Lemma 2.4, and
we continue in this manner. After n steps, letting tn+1 = t , we obtain that:

fn(t1, x1, . . . , tn, xn, t, x) = λn
∫

Rd
u0(dx0) G(t, x − x0)

×
n∏

j=1

G

((

1 − t j

t j+1

)

t j ,

(

1 − t j

t j+1

)

x0

+ t j

t j+1
x j+1 − x j

)

.

(2.8)
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Using the fact that
∫

Rd G(t, x − y)dy = 1 for any x ∈ R
d , we see that

∣
∣
∣
∣

∫

Rnd
fn(t1, x1, . . . , tn, xn, t, x)dx1 . . . dxn

∣
∣
∣
∣

≤ λn
∫

Rd
G(t, x − x0)|u0|(dx0) = λn J+(t, x) < ∞.

This shows that the function fn(t1, ·, . . . , tn, ·, t, x) is in L1(Rnd). The next result
gives the Fourier transform of this function. For this, we need to recall that:

FG(t, ·)(ξ) = exp

(

− t |ξ |2
2

)

for all t > 0, ξ ∈ R
d . (2.9)

Lemma 2.5 For any 0 < t1 < · · · < tn < t = tn+1 and for any ξ1, . . . , ξn ∈ R
d , we

have

F fn(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn)

= λn
n∏

k=1

exp

⎧
⎪⎨

⎪⎩
−1

2

tk+1 − tk
tk tk+1

∣
∣
∣
∣
∣
∣

k∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎫
⎪⎬

⎪⎭
exp

⎧
⎨

⎩
− i

t

⎛

⎝
n∑

j=1

t jξ j

⎞

⎠ · x

⎫
⎬

⎭

×
∫

Rd
exp

⎧
⎨

⎩
−i

⎡

⎣
n∑

j=1

(

1 − t j

t

)

ξ j

⎤

⎦ · x0

⎫
⎬

⎭
G(t, x − x0)u0(dx0).

Proof By definition,

F fn(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn)

=
∫

Rnd
e−i(ξ1·x1+···+ξn ·xn) fn(t1, x1, . . . , tn, xn, t, x)dx1 . . . dxn .

We use the alternative definition (2.8) of the kernel fn(·, t, x) and Fubini’s theorem.
We calculate first the dx1 integral:

∫

Rd
e−iξ1·x1G

((

1 − t1
t2

)

t1,

(

1 − t1
t2

)

x0 + t1
t2

x2 − x1

)

dx1

= exp

{

−iξ1 ·
[(

1 − t1
t2

)

x0 + t1
t2

x2

]}

× FG

((

1 − t1
t2

)

t1, ·
)

(ξ1) ,

where we used the fact that for any t > 0, x ∈ R
d and ξ ∈ R

d ,

FG(t, x − ·)(ξ) =
∫

Rd
e−iξ ·yG(t, x − y)dy = e−iξ ·xFG(t, ·)(ξ). (2.10)
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We calculate next the dx2 integral, using again (2.10):

∫

Rd
exp

{

−i

(

ξ2 + t1
t2

ξ1

)

· x2

}

G

((

1 − t2
t3

)

t2,

(

1 − t2
t3

)

x0 + t2
t3

x3 − x2

)

dx2

= exp

{

−i

(

ξ2 + t1
t2

ξ1

)

·
[(

1 − t2
t3

)

x0 + t2
t3

x3

]}

× FG

((

1 − t2
t3

)

t2, ·
)(

ξ2 + t1
t2

ξ1

)

.

We continue in this manner. At the last step, we obtain the following dxn integral:

∫

Rd
exp

{

−i

(

ξn +
∑n−1

j=1 t jξ j

tn

)

· xn

}

G

((

1 − tn
t

)

tn,

(

1 − tn
t

)

x0 + tn
t

x − xn

)

dxn

= exp

{

−i

(

ξn +
∑n−1

j=1 t jξ j

tn

)

·
[(

1 − tn
t

)

x0 + tn
t

x

]}

× FG

((

1 − tn
t

)

tn, ·
)(

ξn +
∑n−1

j=1 t jξ j

tn

)

.

Putting together all these calculations, it follows thatF fn(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . ,

ξn) is equal to

n∏

k=1

FG

((

1 − tk
tk+1

)

tk, ·
)(∑k

j=1 t jξ j

tk

)

exp

{

−i

∑n
j=1 t jξ j

t
· x

}∫

Rd
u0(dx0) G(t, x − x0)

× exp

⎧
⎨

⎩
−i

⎡

⎣
n−1∑

j=1

(

1 − t j

tn

)

ξ j +
(

1 − tn
t

)(

ξn +
∑n−1

j=1 t jξ j

tn

)⎤

⎦ · x0

⎫
⎬

⎭
.

We note that

n−1∑

j=1

(

1 − t j

tn

)

ξ j +
(

1 − tn
t

)(

ξn +
∑n−1

j=1 t jξ j

tn

)

=
n∑

j=1

(

1 − t j

t

)

ξ j .
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Using (2.9), we have

FG

((

1 − tk
tk+1

)

tk, ·
)(∑k

j=1 t jξ j

tk

)

= exp

⎧
⎨

⎩
−1

2

(

1 − tk
tk+1

)

tk

∣
∣
∣
∣
∣

∑k
j=1 t jξ j

tk

∣
∣
∣
∣
∣

2
⎫
⎬

⎭
.

The conclusion follows. ��

To apply Theorem 2.3, we first need to check that each kernel fn(·, t, x) lives in
the n-th Wiener chaos spaceHn (and hence, its multiple integral with respect to W is
well-defined). The following result shows that Dalang’s condition (1.4) on the spatial
spectral measure of the noise is sufficient for achieving this, regardless of the temporal
covariance function γ .

Theorem 2.6 If μ satisfies (1.4), then for any t > 0, x ∈ R
d and n ≥ 1, fn(·, t, x) ∈

H⊗n and ‖ fn(·, t, x)‖2H⊗n = an(t, x), where

an(t, x) := 1

(2π)nd

∫

Rnd

∫

[0,t]2n

n∏

j=1

γ (t j − s j )

F fn(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn)

× F fn(s1, ·, . . . , sn, ·, t, x)(ξ1, . . . , ξn)

dt1 . . . dtnds1 . . . dsnμ(dξ1) . . . μ(dξn).

Proof We apply Theorem 2.10.c) of [2]. To see that fn(·, t, x) satisfies the conditions
of this theorem, we note that by Lemma 2.5, the map

(t1, . . . , tn, ξ1, . . . , ξn) �→ F fn(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn)

=: φξ1,...,ξn (t1, . . . , tn)

ismeasurable onRn×R
nd .Moreover, for any ξ1, . . . , ξn ∈ R

d , themap (t1, . . . , tn) �→
φξ1,...,ξn (t1, . . . , tn) is continuous and bounded by λn J+(t, x). Calculations similar to
those presented in Sect. 3 show that an(t, x) < ∞. ��

For the remaining of the article, we assume that (1.4) holds. By Theorems 2.3
and 2.6, it follows that the necessary and sufficient condition for the existence of the
solution of (1.1) is the following: for any t ≥ 0 and x ∈ R

d ,

∑

n≥0

n! ‖ f̃n(·, t, x)‖2H⊗n < ∞. (2.11)
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3 Existence of Solution

In this section, we give the proof of Theorem 1.1. This will be based on several
preliminary results.

In the first step, we will show that condition (2.11) holds for any t ≥ 0 and x ∈ R
d .

When this condition holds,

E(|u(t, x)|2) =
∑

n≥0

E(|Jn(t, x)|2) < ∞.

We denote

E(|Jn(t, x)|2) = E(|In( fn(·, t, x))|2)
= n!‖ f̃n(·, t, x)‖2H⊗n

=: 1

n!αn(t, x).

With this notation, condition (2.11) becomes:

∑

n≥0

1

n!αn(t, x) < ∞. (3.1)

Using the definition of the norm in H⊗n , we see that

αn(t, x) =
∫

[0,t]2n

n∏

j=1

γ (t j − s j )ψ
(n)
t,x (t, s)dtds,

where

ψ
(n)
t,x (t, s) =

∫

R2nd

n∏

j=1

f (x j − y j )g
(n)
t,t,x (x1, . . . , xn)g(n)

s,t,x (y1, . . . , yn)dxdy

= 1

(2π)nd

∫

Rnd
Fg(n)

t,t,x (ξ1, . . . , ξn)Fg(n)
s,t,x (ξ1, . . . , ξn)μ(dξ1) . . . μ(dξn)

(3.2)

and we denote

g(n)
t,t,x (x1, . . . , xn) = n! f̃n(t1, x1, . . . , tn, xn, t, x)

= λn
∑

ρ∈Sn

G(t − tρ(n), x − xρ(n))

. . . G(tρ(2) − tρ(1), xρ(2) − xρ(1))

× J0(tρ(1), xρ(1))1{0<tρ(1)<···<tρ(n)
<t}.
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To estimate αn(t, x) we proceed as on page 11 of [16]. By the Cauchy–Schwarz
inequality and the inequality ab ≤ 1

2 (a
2 + b2), we have:

ψ
(n)
t,x (t, s) ≤ ψ

(n)
t,x (t, t)1/2ψ(n)

t,x (s, s)1/2

≤ 1

2

(
ψ

(n)
t,x (t, t) + ψ

(n)
t,x (s, s)

)
.

Since γ is symmetric, we obtain:

αn(t, x) ≤ 1

2

⎛

⎝

∫

[0,t]2n

n∏

j=1

γ (t j − s j )ψ
(n)
t,x (t, t)dtds

+
∫

[0,t]2n

n∏

j=1

γ (t j − s j )ψ
(n)
t,x (s, s)dtds

⎞

⎠

=
∫

[0,t]2n

n∏

j=1

γ (t j − s j )ψ
(n)
t,x (t, t)dtds.

We now use the following elementary lemma, which can be proved by induction.

Lemma 3.1 (Lemma3.3of [2]) For any n ≥ 1and for any nonnegative (or integrable)
function h : [0, t]n → R, we have

∫

[0,t]2n

n∏

j=1

γ (t j − s j )h(t)dtds ≤ �n
t

∫

[0,t]n
h(t)dt, (3.3)

where �t is defined in (1.7).

Applying Lemma 3.1 to the function h(t) = ψn(t, t), we obtain:

αn(t, x) ≤ �n
t

∫

[0,t]n
ψ

(n)
t,x (t, t)dt

= �n
t

∑

ρ∈Sn

∫

0<tρ(1)<···<tρ(n)<t
ψ

(n)
t,x (t, t)dt. (3.4)

Lemma 3.2 If 0 < tρ(1) < · · · < tρ(n) < t =: tρ(n+1), then

ψ
(n)
t,x (t, t) ≤ λ2n J 2+(t, x)

(2π)nd

∫

Rnd
exp

⎧
⎪⎨

⎪⎩
−

n∑

k=1

⎛

⎜
⎝

tρ(k+1) − tρ(k)

tρ(k+1)tρ(k)

∣
∣
∣
∣
∣
∣

k∑

j=1

tρ( j)ξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
μ(dξ1) . . . μ(dξn).
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Proof By definition,

ψ
(n)
t,x (t, t) = 1

(2π)nd

∫

Rnd

∣
∣
∣Fg(n)

t,t,x (ξ1, . . . , ξn)

∣
∣
∣
2
μ(dξ1) . . . μ(dξn).

Similar to Lemma 2.5, it can be shown that

Fg(n)
t,t,x (ξ1, . . . , ξn) = λn

n∏

k=1

exp

⎧
⎪⎨

⎪⎩
−1

2

tρ(k+1) − tρ(k)

tρ(k)tρ(k+1)

∣
∣
∣
∣
∣
∣

k∑

j=1

tρ( j)ξρ( j)

∣
∣
∣
∣
∣
∣

2
⎫
⎪⎬

⎪⎭
exp

⎧
⎨

⎩
− i

t

⎛

⎝
n∑

j=1

t jξ j

⎞

⎠ · x

⎫
⎬

⎭

×
∫

Rd
exp

⎧
⎨

⎩
−i

⎡

⎣
n∑

j=1

(

1 − t j

t

)

ξ j

⎤

⎦ · x0

⎫
⎬

⎭

G(t, x − x0)u0(dx0). (3.5)

The conclusion follows. ��
Lemma 3.3 For any t > 0 and x ∈ R

d ,

E

(
|Jn(t, x)|2

)
= 1

n!αn(t, x) ≤ λ2n�n
t J 2+(t, x)

∫

0<t1<···<tn<t
I (n)
t (t1, . . . , tn)dt1 . . . dtn,

where

I (n)
t (t1, . . . , tn) := 1

(2π)nd

∫

Rnd
exp

⎧
⎪⎨

⎪⎩
−

n∑

k=1

⎛

⎜
⎝

tk+1 − tk
tk+1tk

∣
∣
∣
∣
∣
∣

k∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
μ(dξ1) . . . μ(dξn)

and tn+1 = t .

Proof Using Lemma 3.2, it follows that

∫

0<tρ(1)<···<tρ(n)<t
ψ

(n)
t,x (t, t)dt

≤ λ2n J 2+(t, x)
1

(2π)nd

∫

0<tρ(1)<···<tρ(n)<t
dt
∫

Rnd
μ(dξ1) . . . μ(dξn)

123



J Theor Probab

× exp

⎧
⎪⎨

⎪⎩
−

n∑

k=1

⎛

⎜
⎝

tρ(k+1) − tρ(k)

tρ(k+1)tρ(k)

∣
∣
∣
∣
∣
∣

k∑

j=1

tρ( j)ξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

= λ2n J 2+(t, x)
1

(2π)nd

∫

0<t ′1<···<t ′n<t
dt′
∫

Rnd
μ(dξ1) . . . μ(dξn)

× exp

⎧
⎪⎨

⎪⎩
−

n∑

i=1

⎛

⎜
⎝

t ′k+1 − t ′k
t ′k+1t ′k

∣
∣
∣
∣
∣
∣

k∑

j=1

t ′jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
,

where for the last equality we used the change of variable t ′j = tρ( j) for j = 1, . . . , n
and we denoted t ′n+1 = t . The conclusion follows using (3.4). ��

We now use the following maximum principle, which is of independent interest.

Lemma 3.4 Let μ be a tempered measure on R
d such that its Fourier transform in

S ′
C
(Rd) is a locally integrable function f , i.e., (2.1) holds. Assume that f is nonnega-

tive. Then for any ψ ∈ S(Rd) such that ψ ∗ ψ̃ is nonnegative, where ψ̃(x) = ψ(−x)

for all x ∈ R
d , we have:

sup
η∈Rd

∫

Rd
|Fψ(ξ + η)|2μ(dξ) =

∫

R

|Fψ(ξ)|2μ(dξ). (3.6)

In particular, for any a > 0 and t > 0,

sup
η∈Rd

∫

Rd
e−a|tξ+η|2μ(dξ) =

∫

R

e−a|tξ |2μ(dξ). (3.7)

Proof Note that for any function g ∈ L1(Rd) and for any ξ, η ∈ R
d , we have

Fg(ξ + η) =
∫

Rd
e−iξ ·x e−iη·x g(x)dx = F(e−iη·g)(ξ).

Applying this to the function g = ψ ∗ ψ̃ , we obtain that

|Fψ(ξ + η)|2 = F(ψ ∗ ψ̃)(ξ + η) = F(e−iη·(ψ ∗ ψ̃))(ξ),

for any ξ, η ∈ R
d . For each η ∈ R

d fixed, we apply (2.1) to the function ϕ =
e−iη·(ψ ∗ ψ̃) ∈ SC(Rd). We obtain that for any η ∈ R

d ,

0 ≤
∫

Rd
|Fψ(ξ + η)|2μ(dξ)

=
∫

Rd
F(e−iη·(ψ ∗ ψ̃))(ξ)μ(dξ)
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= (2π)d
∫

Rd
e−iη·x (ψ ∗ ψ̃)(x) f (x)dx

= (2π)d
∣
∣
∣
∣

∫

Rd
e−iη·x (ψ ∗ ψ̃)(x) f (x)dx

∣
∣
∣
∣

≤ (2π)d
∫

Rd
(ψ ∗ ψ̃)(x) f (x)dx

=
∫

Rd
|Fψ(ξ)|2μ(dξ),

using the fact that | ∫ . . . | ≤ ∫ | . . . | and |e−iη·x | = 1. This proves (3.6).
To prove (3.7), we fix t > 0 and consider the measure μt = μ ◦ h−1

t on Rd , where
ht (x) = tξ for all ξ ∈ R

d . Using (2.9), it follows that

∫

Rd
e−a|tξ+η|2μ(dξ) =

∫

Rd
e−a|ξ+η|2μt (dξ)

=
∫

Rd
|FG(a, ·)(ξ + η)|2μt (dξ).

We note that μt is a tempered measure and its Fourier transform in S ′
C
(Rd) is the

locally integrable function ft , defined by ft (x) = f (t x) for all x ∈ R
d (see the proof

of Lemma 3.2 of [2]). Applying (3.6) to the function ψ = G(a, ·) ∈ S(Rd) and the
Fourier pair (μt , ft ), we obtain that for any η ∈ R

d ,

∫

Rd
|FG(a, ·)(ξ + η)|2μt (dξ) ≤

∫

Rd
|FG(a, ·)(ξ)|2μt (dξ)

=
∫

Rd
e−a|tξ |2μ(dξ).

This completes the proof of Lemma 3.4. ��
Now we need to introduce some notation. Following [10], define

k(t) :=
∫

Rd
f (z)G(t, z)dz. (3.8)

By (2.1) and (2.9), we see that

k(t) = 1

(2π)d

∫

Rd
exp

(

− t |ξ |2
2

)

μ(dξ), (3.9)

from which one can see that k(t) is a non-increasing function. By the dominated
convergence theorem and condition (1.4), we see that k is continuous on (0,∞).

Using Lemma 3.4 and the definition of the function k, we obtain the following
estimate for the integral I (n)

t (t1, . . . , tn) defined in Lemma 3.3.
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Lemma 3.5 For any 0 < t1 < · · · < tn < t =: tn+1, we have that

I (n)
t (t1, . . . , tn) ≤ J (n)

t (t1, . . . , tn) :=
n∏

i=1

k

(
2(ti+1 − ti )ti

ti+1

)

,

and hence,

∫

0<t1<···<tn<t
I (n)
t (t1, . . . , tn)dt1 . . . dtn

≤
∫

0<t1<···<tn<t
J (n)

t (t1, . . . , tn)dt1 . . . dtn .

Proof We denote ai = (ti+1 − ti )/(ti ti+1) for all i = 1, . . . , n and we write

I (n)
t (t1, . . . , tn) = 1

(2π)nd

∫

Rd
μ(dξ1) e−a1|t1ξ1|2

∫

Rd
μ(dξ2) e−a2|t1ξ1+t2ξ2|2 . . .

×
∫

Rd
μ(dξn) e−an |t1ξ1+···+tnξn |2 .

For the inner integral, we note that for any ξ1, . . . , ξn−1 ∈ R
d ,

∫

Rd
e−an |t1ξ1+···+tnξn |2μ(dξn) ≤ sup

η∈Rd

∫

Rd
e−an |η+tnξn |2μ(dξn)

=
∫

Rd
e−an |tnξn |2μ(dξn),

by Lemma 3.4. The other integrals are estimated similarly. Hence,

I (n)
t (t1, . . . , tn) ≤ 1

(2π)nd

n∏

i=1

∫

Rd
exp

(

− ti+1 − ti
ti ti+1

|tiξi |2
)

μ(dξi ). (3.10)

The conclusion follows by the definition (3.9) of the function k(t). ��
For t ≥ 0, denote h0(t) := 1 and for n ≥ 1

hn(t) :=
∫ t

0
hn−1(s)k(t − s)ds.

Note that hn(t) ∈ [0,∞] for all t ≥ 0 and hn is non-decreasing (by Lemma 2.6 of
[10]). Moreover, under Dalang’s condition (1.4), for any β > 0 and for any integer
n ≥ 0,

∫ ∞

0
e−βt hn(t)dt = 1

β

(∫ ∞

0
e−βt k(t)dt

)n

= 1

β
[2ϒ(2β)]n < ∞. (3.11)

123



J Theor Probab

Hence hn(t) < ∞ for almost all t ≥ 0. Since hn is non-decreasing, it follows that
hn(t) < ∞ for all t ≥ 0.

Lemma 3.6 For any t ≥ 0 and for any integer n ≥ 1, it holds that

∫

0<t1<···<tn<t
J (n)

t (t1, . . . , tn)dt1 . . . dtn ≤ 2nhn(t).

Proof We first show that for any n ≥ 0 and t ≥ 0,

∫ t

0
k

(
2(t − s)s

t

)

hn(s)ds ≤ 2hn+1(t). (3.12)

Fix n ≥ 0. By symmetry, we see that for any t ≥ 0,

∫ t

0
k

(
2(t − s)s

t

)

hn(s)ds =
∫ t

0
k

(
2s(t − s)

t

)

hn(t − s)ds

≤
∫ t/2

0
k

(
2s(t − s)

t

)

hn(t − s)ds

+
∫ t

t/2
k

(
2s(t − s)

t

)

hn(s)ds

= 2
∫ t/2

0
k

(
2s(t − s)

t

)

hn(t − s)ds,

where for the inequality above we used the fact that hn is non-decreasing and hence
hn(t − s) ≤ hn(s) for s ≥ t/2. Because k(t) is non-increasing and 2s(t − s)/t ≥ s
for s ∈ [0, t/2], we have that

∫ t/2

0
k

(
2s(t − s)

t

)

hn(t − s)ds ≤
∫ t/2

0
k (s) hn(t − s)ds

≤
∫ t

0
k (s) hn(t − s)ds = hn+1(t).

This proves (3.12).
Denote I = ∫0<t1<···<tn<t J (n)

t (t1, . . . , tn)dt1 . . . dtn . By inequality (3.12),

I =
∫ t

0
dtn k

(
2(t − tn)tn

t

)∫ tn

0
dtn−1 k

(
2(tn − tn−1)tn−1

tn

)

· · ·

× · · ·
∫ t2

0
dt1 k

(
2(t2 − t1)t1

t2

)

≤ 2
∫ t

0
dtn k

(
2(t − tn)tn

t

)∫ tn

0
dtn−1 k

(
2(tn − tn−1)tn−1

tn

)

· · ·

× · · ·
∫ t3

0
dt2 k

(
2(t3 − t2)t2

t3

)

h1(t2) ≤ · · · ≤
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≤ 2n−1
∫ t

0
dtn k

(
2(t − tn)tn

t

)

hn−1(tn)

≤ 2nhn(t).

This proves Lemma 3.6. ��
The next lemma gives us more information about hn(t).

Lemma 3.7 If condition (1.11) holds, then

hn(t) ≤ [2ϒ(0)]n for any t > 0 and n ≥ 1. (3.13)

Proof By Fubini’s theorem,

h1(t) = 1

(2π)d

∫ t

0

∫

Rd
e−s|ξ |2/2μ(dξ)ds = 1

(2π)d

∫

Rd

1 − e−t |ξ |2/2

|ξ |2/2 μ(dξ).

Hence, by the monotone convergence theorem,

lim
t→∞ h1(t) = 1

(2π)d

∫

Rd

μ(dξ)

|ξ |2/2 = 2ϒ(0).

Because h1(t) is non-decreasing, the above limit shows that h1(t) ≤ 2ϒ(0). The
conclusion follows by induction on n. ��

We need to introduce some additional notation. For γ ≥ 0 and t ≥ 0, define

H(t; γ ) :=
∞∑

n=0

γ nhn(t) and H̃(t; γ ) :=
∞∑

n=0

√
γ nhn(t) . (3.14)

Note that H(t; γ ) ∈ [0,∞] and H̃(t; γ ) ∈ [0,∞] for all t ≥ 0 and γ ≥ 0. Since hn

is non-decreasing for all n, both t �→ H(t; γ ) and t �→ H̃(t; γ ) are non-decreasing.

Lemma 3.8 For any t ≥ 0 and γ > 0, H(t; γ ) < ∞ and H̃(t; γ ) < ∞. For all
γ > 0,

lim sup
t→∞

1

t
log H(t; γ ) ≤ θ and lim sup

t→∞
1

t
log H̃(t; γ ) ≤ θ,

where this constant θ can be chosen as

θ := θ(γ ) = inf

{

β > 0 : ϒ(2β) <
1

2γ

}

. (3.15)

Moreover, if ϒ(0) < ∞, then for all t ≥ 0 and 0 < γ < 1/[2ϒ(0)],

H(t; γ ) ≤ 1

1 − 2γϒ(0)
and H̃(t; γ ) ≤ 1

1 − √
2γϒ(0)

.
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Proof The statements for H(t; γ ) are proved in Lemma 2.5 in [10] (with ν = 1). We
include the argument for the sake of completeness. Let γ > 0 be arbitrary. By the
dominated convergence theorem, limβ→∞ ϒ(β) = 0, Hence, there exists β > 0 such
that 2ϒ (2β) γ < 1. By (3.11), we have:

∫ ∞

0
e−βt H(t; γ )dt =

∑

n≥0

γ n
∫ ∞

0
e−βt hn(t)dt

=
∑

n≥0

γ n[2ϒ(2β)]n < ∞. (3.16)

Hence H(t; γ ) < ∞ for almost all t ≥ 0. Since t �→ H(t; γ ) is non-decreasing, it
follows that H(t; γ ) < ∞ for all t ≥ 0. By Lemma A.1 (Appendix A), we conclude
that

lim sup
t→∞

1

t
log H(t; γ ) ≤ inf

{

β > 0;
∫ ∞

0
e−βt H(t; γ )dt < ∞

}

= θ(γ ),

where θ(γ ) is defined in (3.15) and the last inequality is due to the fact that (thanks
to (3.16))

∫ ∞

0
e−βt H(t; γ )dt < ∞ ⇐⇒ 2γϒ(2β) < 1.

The results for H̃(t; γ ) are proved similarly. Notice that, due to the Cauchy–
Schwarz inequality and (3.11), for any β > 0,

∫

R+
e−βt

√
hn(t)dt ≤ 1√

β

(∫

R+
e−βt hn(t)dt

)1/2

= 1

β

(∫

R+
e−βt k(t)dt

)n/2

= [2ϒ(2β)]n/2

β
.

Therefore, for β > 0 such that 2ϒ(2β)γ < 1, we have

∫ ∞

0
e−βt H̃(t; γ )dt =

∑

n≥0

γ n/2
∫ ∞

0
e−βt

√
hn(t)dt

= 1

β

∑

n≥0

γ n/2[2ϒ(2β)]n/2 < ∞.

Using the same argument as above, we infer that H̃(t; γ ) < ∞ for any t ≥ 0 and
γ > 0. By Lemma A.1 (Appendix A), we conclude that

lim sup
t→∞

1

t
log H̃(t; γ ) ≤ θ(γ ).
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When ϒ(0) < ∞, using (3.13), we have

H(t; γ ) ≤
∑

n≥0

γ n[2ϒ(0)]n = 1

1 − 2γϒ(0)
and

H̃(t; γ ) ≤
∑

n≥0

γ n/2[2ϒ(0)]n/2 = 1

1 − √
2γϒ(0)

,

whenever 2γϒ(0) < 1. This completes the proof of Lemma 3.8. ��
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 (a)We first show the existence (and uniqueness) of the solution.
As mentioned at the beginning of this section, this reduces to showing that condition
(3.1) holds for any t ≥ 0 and x ∈ R

d . By Lemmas 3.3, 3.5 and 3.6,

E

(
|Jn(t, x)|2

)
= 1

n!αn(t, x) ≤ λ2n J 2+(t, x)�n
t 2

nhn(t).

Hence, by invoking Lemma 3.8, we see that:

∑

n≥0

1

n!αn(t, x) ≤ J 2+(t, x)
∑

n≥0

λ2n2n�n
t hn(t) = J 2+(t, x)H(t; 2λ2�t ) < ∞.

This concludes the proof of (3.1).
Next, we prove (1.8). Let p ≥ 2 be arbitrary. Recall that we denote by ‖ · ‖p the

L p(�)-norm. Since the norms ‖ · ‖p are equivalent on a fixed Wiener chaosHn (see,
e.g., [18, Theorem 5.10]),

‖Jn(t, x)‖p ≤ (p − 1)n/2‖Jn(t, x)‖2
≤ (p − 1)n/2|λ|n J+(t, x)�

n/2
t 2n/2

√
hn(t). (3.17)

By Minkowski’s inequality,

‖u(t, x)‖p ≤
∑

n≥0

‖Jn(t, x)‖p ≤ J+(t, x)

∑

n≥0

|λ|n(p − 1)n/2�
n/2
t 2n/2

√
hn(t) (3.18)

= J+(t, x)H̃
(

t; 2λ2(p − 1)�t

)
. (3.19)

By Lemma 3.8, the previous quantity is finite. This concludes the proof of (1.8).
Relation (1.9) follows since the function H̃(t; γ ) is non-decreasing in t and γ and

Da := sup
(t,x)∈Ka

J+(t, x) < ∞. (3.20)

Note that (3.20) is a consequence of Lemma B.2 (Appendix B).
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Wenowprove thatu is L p(�)-continuous on (0,∞)×R
d . Note that byLemmasB.2

andB.3 (AppendixB), un =∑n
k=0 Jk is L p(�)-continuous on (0,∞)×R

d . Let a > 0
be arbitrary. By relation (3.17), and the fact that �t and hn(t) are non-decreasing in t ,
we have

∑

n≥0

sup
(t,x)∈Ka

‖Jn(t, x)‖p ≤ Da

∑

n≥0

(p − 1)n/2�n
a |λ|n2n/2

√
hn(a)

= Da H̃(a; 2λ2(p − 1)�a) < ∞,

which means that un(t, x) → u(t, x) in L p(�), uniformly on Ka . Hence u is L p(�)-
continuous on Ka . Since a > 0 was arbitrary, u is L p(�)-continuous on (0,∞)×R

d .
(b) Since �t ≤ �∞ for any t > 0 and H̃(t; γ ) is non-decreasing in γ , by (3.19) we

have that:
‖u(t, x)‖p ≤ J+(t, x)H̃

(
t; 2λ2(p − 1)�∞

)
. (3.21)

The conclusion follows by Lemma 3.8, using the fact that:

lim sup
t→∞

1

t
log J+(t, x) = 0. (3.22)

Note that (3.22) is a consequence of (1.10). For a proof of this, see page 19 of [10].
(c) It is shown in [10] that ϒ(0) < ∞ happens only when d ≥ 3. Let γ =

2λ2(p − 1)�∞. By (3.21) and Lemma 3.8,

‖u(t, x)‖p ≤ J+(t, x)

1 − √
2γϒ(0)

,

provided that γ < 1/[2ϒ(0)]. This last condition is equivalent to

|λ| ≤
[

1

4(p − 1)�∞ϒ(0)

]1/2

=: λc.

The conclusion follows from (3.22). ��

4 The Riesz Kernel Case

In this part, we prove Theorem 1.2. For this, we build upon our previous estimate
(3.10) for the integral I (n)

t (t1, . . . , tn), using the specific form of the measure μ. A
similar argument can also be found in Example A.1 of [10].

In this section, we assume that f is the Riesz kernel of order 0 < α < d, given by:

f (x) = π−d/22−α
�( d−α

2 )

�(α
2 )

|x |−α, (4.1)
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Suppose that α < 2, so that (1.4) holds. It is known that

μ(dξ) = |ξ |−(d−α)dξ.

Hence, for any t > 0,

∫

Rd
e−t |ξ |2μ(dξ) = C (1)

α,d t−α/2,

where C (1)
α,d = ∫

Rd e−|ξ |2 |ξ |−(d−α)dξ . (This follows by the change of variable ξ ′ =
t1/2ξ .) Using (3.10), it follows that

I (n)
t (t1, . . . , tn) ≤ Cn

α,d

(
t2 − t1

t1t2
· t3 − t2

t2t3
· . . . · t − tn

tnt
t21 t22 . . . t2n

)−α/2

= Cn
α,d tα/2[t1(t2 − t1)(t3 − t2) . . . (t − tn)]−α/2, (4.2)

where Cα,d = (2π)−dC (1)
α,d . We need the following elementary result.

Lemma 4.1 For any h > −1, we have

∫

0<t1<···<tn<t
[t1(t2 − t1)(t3 − t2) . . . (t − tn)]hdt1 . . . dtn

= �(h + 1)n+1

�((n + 1)(h + 1))
tn(h+1)+h .

Proof We write the integral as an iterated integral of the form:

∫ t

0
(t − tn)h

(∫ tn

0
(tn − tn−1)

h . . .

(∫ t2

0
th
1 (1 − t1)

hdt1

)

. . . dtn−1

)

dtn .

The inner integral is equal to B(h+1, h+1)t2h+1
2 , where B(a, b) = �(a)�(b)/�(a+

b) is the beta function. The second inner integral is B(h + 1, h + 1)B(2(h + 1), h +
1)t3h+2

3 . We continue in this manner. After n steps, we obtain that the last integral is
equal to

B(h + 1, h + 1)B(2(h + 1), h + 1) . . . B(n(h + 1), h + 1)t (n+1)h+n .

The conclusion follows from the definition of the beta function. ��
Recall that the two-parameter Mittag–Leffler function [21, Section 1.2] is defined

as follows:

Eα,β(z) :=
∞∑

k=0

zk

�(αk + β)
, α > 0, β > 0. (4.3)
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Lemma 4.2 (Theorem 1.3 p. 32 in [21]) If 0 < α < 2, β is an arbitrary complex
number and μ is an arbitrary real number such that

πα/2 < μ < π ∧ (πα) ,

then for an arbitrary integer p ≥ 1 the following expression holds:

Eα,β(z) = 1

α
z(1−β)/α exp

(
z1/α

)
−

p∑

k=1

z−k

�(β − αk)
+ O

(
|z|−1−p

)
,

|z| → ∞, | arg(z)| ≤ μ .

Proof of Theorem 1.2 Using Lemma 3.3, relation (4.2) and Lemma 4.1, we have

||u(t, x)||22 =
∑

n≥0

E

[
J 2

n (t, x)
]

≤
∑

n≥0

λ2n�n
t J 2+(t, x)Cn

α,d tα/2

∫

0<t1<···<tn<t
[t1(t2 − t1) . . . (t − tn)]−α/2dt1 . . . dtn

=
∑

n≥0

λ2n�n
t J 2+(t, x)Cn

α,d
�(1 − α/2)n+1

�((n + 1)(1 − α/2))
tn(1−α/2)

= J 2+(t, x)�(1 − α/2)E1−α/2,1−α/2

(
λ2�t Cα,d�(1 − α/2)t1−α/2

)

≤ C ′
α,d J 2+(t, x) exp

(
C ′′

α,d |λ|4/(2−α)�
2/(2−α)
t t

)
,

where in the last step we have applied Lemma 4.2 (see the proof of Proposition 3.2
of [7] for a similar argument). The constant C ′′

α,d can be any constant that is strictly

bigger than [Cα,d�(1 − α/2)]2/(2−α) and the constant C ′
α,d is defined as

C ′
α,d = �(1 − α/2) sup

t≥0

E1−α/2,1−α/2
(
λ2�t Cα,d�(1 − α/2)t1−α/2

)

exp
(

C ′′
α,d |λ|4/(2−α)�

2/(2−α)
t t

)

= �(1 − α/2) sup
x≥0

E1−α/2,1−α/2
(
Cα,d�(1 − α/2)x1−α/2

)

exp
(

C ′′
α,d x

) < ∞.

As for the p-th moment, by Poicaré-type expansions of gamma function (see [20,
5.11.3 o p. 140]),

lim
x→∞

�(x/2)√
�(x)

= 0.
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Hence, for some constant Kα > 0, �((n + 1)(1 − α/2))−1/2 ≤ Kα�((n + 1)(2 −
α)/4)−1 for all n ≥ 0. Therefore, from (3.18) and the calculations above, we see that

||u(t, x)||p ≤
∑

n≥0

|λ|n(p − 1)n/2�
n/2
t J+(t, x)Cn/2

α,d

�(1 − α/2)(n+1)/2

√
�((n + 1)(1 − α/2))

tn(2−α)/4

≤ Kα

∑

n≥0

|λ|n(p − 1)n/2�
n/2
t J+(t, x)Cn/2

α,d

�(1 − α/2)(n+1)/2

�((n + 1)(2 − α)/4)
tn(2−α)/4

= Kα�(1 − α/2)1/2 J+(t, x)E(2−α)/4,(2−α)/4
(
|λ|√p�t Cα,d�(1 − α/2) t (2−α)/4

)

≤ C̃ ′
α,d J+(t, x) exp

(
C̃ ′′

α,d |λ|4/(2−α) p2/(2−α)�
2/(2−α)
t t

)
,

where, by the same arguments as above, the constant C̃ ′′
α,d is any constant that is strictly

bigger than [Cα,d�(1 − α/2)]2/(2−α) and C̃ ′
α,d is defined as

C̃ ′
α,d = Kα�(1 − α/2)1/2 sup

t≥0

E(2−α)/4,(2−α)/4
(|λ|√p�t Cα,d�(1 − α/2) t (2−α)/4

)

exp
(

C̃ ′′
α,d |λ|4/(2−α) p2/(2−α)�

2/(2−α)
t t

)

= Kα�(1 − α/2)1/2 sup
x≥0

E(2−α)/4,(2−α)/4
(√

Cα,d�(1 − α/2) x
)

exp
(

C̃ ′′
α,d x4/(2−α)

) < ∞,

which does not depend on p. This completes the proof of Theorem 3.9. ��

5 Hölder Continuity

In this section, we give the proof of Theorem 1.3. For this, we need a preliminary
result.

Lemma 5.1 Let β ∈ (0, 1) be arbitrary. Then

∫

Rd

μ(dξ)
(
1 + |ξ |2)β

< ∞ if and only if
∫ 1

0

k(s)

s1−β
ds < ∞,

where the function k is defined by (3.8).
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Proof In the proof, we use c and C to denote general constants whose values may be
different at each occurrence. By the definition of k(s), we have that

∫ 1

0
s−(1−β)k(s)ds = C

∫

Rd
μ(dξ)

∫ 1

0
s−(1−β) exp

(
− s

2
|ξ |2
)
ds

= C
∫

Rd
μ(dξ)

( |ξ |2
2

)−β ∫ |ξ |2
2

0
s−(1−β)e−sds.

Denote g(x) := x−β
∫ x
0 s−(1−β)e−sds. Because

lim
x→0+

g(x)(1 + x)β = 1/β and lim
x→∞ g(x)(1 + x)β = �(β),

both functions g(x)(1+x)β and
[
g(x)(1 + x)β

]−1
are continuous functions on [0,∞].

Hence,

c

(1 + x)β
≤ g(x) ≤ C

(1 + x)β
for all x ≥ 0.

Therefore,

c
∫

Rd

μ(dξ)
(
1 + |ξ |2)β

≤
∫ 1

0
s−(1−β)k(s)ds ≤ C

∫

Rd

μ(dξ)
(
1 + |ξ |2)β

.

This completes the proof of Lemma 5.1. ��

Remark 5.2 Let f be the Riesz kernel with α ∈ (0, d ∧ 2) given by (4.1). Example
A.1 of [10] shows that in this case, k(t) = Ct−α/2. In this case,

∫ 1
0

k(s)
s1−β ds < ∞ for

all β ∈ (α/2, 1).

Proof of Theorem 1.3 We proceed as in the proof of Theorem 4.3 of [2], using the
bounds obtained in the proof of Lemma B.3 (Appendix B). Let θ = 1 − β.

Step 1. (left increments in time) Let (t, x), (t ′, x) ∈ Ka . Say t ′ = t − h for some
h > 0. We have

‖u(t − h, x) − u(t, x)‖p ≤
∑

n≥0

(p − 1)n/2‖Jn(t − h, x)) − Jn(t, x)‖2

≤
∑

n≥0

(p − 1)n/2
(
2

n!
[
A′

n(t, h, x) + B ′
n(t, h, x)

]
)1/2

,

(5.1)

where A′
n(t, h, x) and B ′

n(t, h, x) are given by (B.21), respectively (B.22).
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To find an upper bound for A′
n(t, h, x), we use (B.13). Notice that

exp

⎛

⎜
⎝− t − h − tn

(t − h)tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

⎡

⎢
⎣1 − exp

⎛

⎜
⎝− h

2t (t − h)

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

⎤

⎥
⎦

θ

≤ exp

⎛

⎜
⎝− t − h − tn

(t − h)tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

(
h

2t (t − h)

)θ

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2θ

≤ hθ

t2θ
exp

⎛

⎜
⎝− t − h − tn

(t − h)tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2θ

.

Now for A > 0 and x ≥ 0, we see that

exp

(

− A

2
x2
)

x2θ = exp

(

− A

2
x2 + 2θ log x

)

≤ (2θ/e)θ A−θ .

This can be seen by noticing that the function f (x) = − A
2 x2+2θ log x, x > 0 attains

its maximum at x0 = √
2θ/A. Therefore, for some constant Cθ > 0 depending on θ ,

exp
(
−Ax2

)
x2θ ≤ Cθ A−θ exp

(

− A

2
x2
)

, for all x ≥ 0. (5.2)

Hence, this inequality implies that

exp

⎛

⎜
⎝− t − h − tn

(t − h)tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2θ

≤ Cθ

(
(t − h)tn
t − h − tn

)θ

exp

⎛

⎜
⎝− t − h − tn

2(t − h)tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠ .

Thus, by denoting tn+1 := t − h, and using (B.13), we have that

A′
n(t, h, x) ≤ �n

t λ2n J 2+(t, x)n! 1

(2π)nd

∫

0<t1<···<tn<t−h

∫

Rnd

n∏

k=1

exp

⎛

⎜
⎝− tk+1 − tk

2tk tk+1

∣
∣
∣
∣
∣
∣

k∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

× Cθ hθ

(t − h − tn)θ
μ(dξ1) . . . μ(dξn)dt1 . . . dtn .
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Using (B.29), we have

∫

0<t1<···<tn<t−h
(t − h − tn)

−θ
n−1∏

k=1

exp

⎛

⎜
⎝−1

2

tk+1 − tk
tk+1tk

∣
∣
∣
∣
∣
∣

k∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

× exp

⎛

⎜
⎝−1

2

t − h − tn
(t − h)tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠ dt1 . . . dtn

= 2−θ

∫

0<t1<···<tn<t−h

(
t − h

2
− tn

2

)−θ n−1∏

k=1

exp

⎛

⎜
⎝−

tk+1
2 − tk

2
tk+1
2

tk
2

∣
∣
∣
∣
∣
∣

k∑

j=1

t j

2
ξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

× exp

⎛

⎜
⎝−

t−h
2 − tn

2
t−h
2

tn
2

∣
∣
∣
∣
∣
∣

n∑

j=1

t j

2
ξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠ dt1 . . . dtn

= 2−θ2n
∫

0<t ′1<···<t ′n< t−h
2

(
t − h

2
− t ′n

)−θ n−1∏

k=1

exp

⎛

⎜
⎝− t ′k+1 − t ′k

t ′k+1t ′k

∣
∣
∣
∣
∣
∣

k∑

j=1

t ′jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

× exp

⎛

⎜
⎝−

t−h
2 − t ′n
t−h
2 t ′n

∣
∣
∣
∣
∣
∣

n∑

j=1

t ′jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠ dt ′1 . . . dt ′n,

where the second equality follows from the change of variables t ′k = tk/2 for k =
1, . . . , n. Using the notation tn+1 = t−h

2 , we see that

A′
n(t, h, x) ≤ �n

t λ2n J 2+(t, x)n!2−θ 1

(2π)nd

∫

0<t1<···<tn< t−h
2

∫

Rnd

n∏

k=1

exp

⎛

⎜
⎝− tk+1 − tk

tk tk+1

∣
∣
∣
∣
∣
∣

k∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

× 2nCθ hθ

(
t − h

2
− tn

)−θ

μ(dξ1) . . . μ(dξn)dt1 . . . dtn

= �n
t λ2n J 2+(t, x)n!2−θ2nCθ hθ

∫

0<t1<···<tn< t−h
2

I (n)
t−h
2

(t1, . . . , tn)

(
t − h

2
− tn

)−θ

dt1 . . . dtn

≤ �n
t λ2n J 2+(t, x)n!2−θ2nCθ hθ

∫

0<t1<···<tn< t−h
2

J (n)
t−h
2

(t1, . . . , tn)
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(
t − h

2
− tn

)−θ

dt1 . . . dtn

= �n
t λ2n J 2+(t, x)n!2−θ2nCθ hθ

∫ t−h
2

0

(
t − h

2
− tn

)−θ

k

(
2( t−h

2 − tn)tn
t−h
2

)

×
(∫

0<t1<···<tn−1<tn
J (n−1)

tn (t1, . . . , tn−1)dt1 . . . dtn−1

)

dtn

≤ �n
t λ2n J 2+(t, x)n!2−θ2nCθ hθ2n−1

∫ t−h
2

0
hn−1(tn)

(
t − h

2
− tn

)−θ

k

(
2( t−h

2 − tn)tn
t−h
2

)

dtn,

where I (n)
t and J (n)

t are defined in Lemmas 3.3 and 3.5, and for the last inequality
above we used Lemma 3.5

We claim that for any t > 0 and n ≥ 0,

∫ t

0
(t − s)−θ k

(
2(t − s)s

t

)

hn(s)ds ≤ 2
∫ t

0
s−θk(s)hn(t − s)ds. (5.3)

This is proved similarly to (3.11):

∫ t

0
(t − s)−θk

(
2(t − s)s

t

)

hn(s)ds =
∫ t

0
s−θ k

(
2s(t − s)

t

)

hn(t − s)ds

≤
∫ t/2

0
s−θk

(
2s(t − s)

t

)

hn(t − s)ds

+
∫ t

t/2
s−θ k

(
2s(t − s)

t

)

hn(s)ds

=
∫ t/2

0
s−θ k

(
2s(t − s)

t

)

hn(t − s)ds

+
∫ t/2

0
(t − s)−θ k

(
2s(t − s)

t

)

hn(t − s)ds

≤ 2
∫ t/2

0
s−θ k

(
2s(t − s)

t

)

hn(t − s)ds,

where for the first inequality above we used the fact that hn is non-decreasing and
hence hn(t − s) ≤ hn(s) for s ≥ t/2, and for the last inequality we used the fact that
(t − s)−θ ≤ s−θ for s ∈ [0, t/2]. Because k(t) is non-increasing and 2s(t − s)/t ≥ s
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for s ∈ [0, t/2], we have that
∫ t/2

0
s−θ k

(
2s(t − s)

t

)

hn(t − s)ds ≤
∫ t/2

0
s−θ k (s) hn(t − s)ds

≤
∫ t

0
s−θ k (s) hn(t − s)ds.

This proves (5.3). We use inequality (5.3) with t−h
2 instead of t . We obtain:

A′
n(t, h, x) ≤ �n

t λ2n J 2+(t, x)n!2−θ22nCθ hθ

∫ t−h
2

0
s−θ k(s)hn−1

(
t − h

2
− s

)

ds.

Using (3.20) and the fact that hn is non-decreasing, we obtain:

A′
n(t, h, x) ≤ �n

a (2λ)2n Dan!2−θCθ hθ hn−1(a)

∫ a

0

k(s)

sθ
ds. (5.4)

We now treat the term B ′
n(t, h, x). We will use (B.31). Note that 1/t ≥ 1/a and

t − s ≥ t − h ≥ 1/a for any s ∈ [0, h]. Since k is non-increasing,

∫ h

0
k

(
2s(t − s)

t

)

ds ≤
∫ h

0
k

(
2s

a2

)

ds ≤ h−θ

∫ h

0
k

(
2s

a2

)

ds = hθ

(
a2

2

)1−θ ∫ 2h/a2

0

k(s)

sθ
ds.

Using (B.31) and (3.20), we obtain:

B ′
n(t, h, x) ≤ �n

aλ2n Dan! 2n−1hn−1(a)hθ

(
a2

2

)1−θ ∫ 2/a

0

k(s)

sθ
ds. (5.5)

Combining (5.1), (5.4) and (5.5), it follows that

‖u(t − h, x) − u(t, x)‖p ≤ Chθ/2 H̃(a; γ ),

where C > 0 is a constant depending on a and β, and γ is a constant depending on
p, a, λ.

Step 2. (right increments in time) For h > 0, we have

‖u(t + h, x) − u(t, x)‖p ≤
∑

n≥0

(p − 1)n/2‖Jn(t + h, x)) − Jn(t, x)‖2

≤
∑

n≥0

(p − 1)n/2
(
2

n! [An(t, h, x) + Bn(t, h, x)]

)1/2

,

(5.6)
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where An(t, h, x) and Bn(t, h, x) are given by (B.9) and (B.10), respectively. These
terms are treated similarly to A′

n(t, h, x) and B ′
n(t, h, x) as above.We omit the details.

Step 3. (increments in space) Let (t, x) and (t, x ′) ∈ Ka . Say x ′ = x + z for some
z ∈ R

d . Then

‖u(t, x + z) − u(t, x)‖p ≤
∑

n≥0

(p − 1)n/2‖Jn(t, x + z) − Jn(t, x)‖2

=
∑

n≥0

(p − 1)n/2
(
1

n!Cn(t, x, z)

)1/2

≤
∑

n≥0

(p − 1)n/2
(
2

n! [C
(1)
n (t, x, z) + C (2)

n (t, x, z)]
)1/2

,

where Cn(t, x, z), C (1)
n (t, x, z) and C (2)

n (t, x, z) are given by (B.35), (B.39) and
(B.40), respectively.

Notice that for some constant Kθ > 0,

∣
∣
∣1 − eix

∣
∣
∣
2 = 2(1 − cos(x)) ≤ Kθ |x |2θ , for all x ∈ R.

Hence,

∣
∣
∣
∣
∣
∣
1 − exp

⎛

⎝− i

t

⎛

⎝
n∑

j=1

t jξ j

⎞

⎠ · z

⎞

⎠

∣
∣
∣
∣
∣
∣

2

≤ Kθ

∣
∣
∣
∣
∣

(
∑n

j=1 t jξ j ) · z

t

∣
∣
∣
∣
∣

2θ

≤ Kθ

|z|2θ
t2θ

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2θ

.

From this, it follows that

C (1)
n (t, x, z) ≤ �n

t λ2n J 2+(t, x + z)n!
(2π)nd

∫

0<t1<···<tn<t

∫

Rnd

n∏

k=1

exp

⎛

⎜
⎝− tk+1 − tk

tk tk+1

∣
∣
∣
∣
∣
∣

k∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

× Kθ

|z|2θ
t2θ

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2θ

μ(dξ1) . . . μn(dξn)dt1 . . . dtn .
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Now we bound the innermost terms of the product using inequality (5.2):

exp

⎛

⎝− t − tn
t tn

|
n∑

j=1

t jξ j |2
⎞

⎠

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2θ

≤ Cθ

(
t − tn

t tn

)−θ

exp

⎛

⎜
⎝− t − tn

2t tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

≤ Cθ t2θ (t − tn)−θ exp

⎛

⎜
⎝− t − tn

2t tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠ .

Using arguments similar to those used for A′
n(t, h, x) above, we obtain that

C (1)
n (t, x, z) ≤ �n

a (2λ)2n Dan!2−θ KθCθ |z|2θ hn−1(a)

∫ a

0

k(s)

sθ
.

Finally, to treat C (2)
n (t, x, z), we use (B.40). Recalling the definition (B.37) of

F(t, x, z), the conclusion follows from the following inequality, given by Lemma 4.1
of [8]:

|G(t, x) − G(t, y)| ≤ 1

tθ/2 [G(2t, x) + G(2t, y)] |x − y|θ . (5.7)

This completes the proof of Theorem 1.3. ��
Acknowledgements The authors would like to thank an anonymous referee for reading the paper very
carefully, and for pointing out several typos.

Appendix A: A Technical Lemma

Lemma A.1 If H : [0,∞) → [0,∞) is a non-decreasing function such that

γ := inf

{

β > 0 :
∫ ∞

0
e−βt H(t)dt < ∞

}

< ∞,

then

lim sup
t→∞

1

t
log H(t) ≤ γ.

Proof We will prove this lemma by contradiction. Suppose that lim supt→∞ t−1 log
H(t) > γ . Then there exist ε0 > 0 and a non-decreasing sequence {tn}n≥1 such that
0 ≤ tn ↑ ∞ as n → ∞ and
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log H(tn) ≥ tn(γ + ε0), for all n ≥ 1.

Moreover, we assume that tn ≥ s∗
n−1 for a certain sequence (s∗

n )n≥1 which will be
constructed below. By definition of γ , we have that

∫ ∞

0
e−(γ+ε)t H(t)dt < ∞, for all ε > 0. (A.1)

We claim that there exits s1 > t1 such that H(s1) ≤ e(γ+ε0/2)s1 . If this is not true,
then

H(t)1{t>t1} > e(γ+ε0/2)t1{t>t1},

which leads to the following contradiction with (A.1):

∫ ∞

t1
e−(γ+ε0/4)t H(t)dt ≥

∫ ∞

t1
e−(γ+ε0/4)te(γ+ε0/2)tdt = ∞.

Let r1 = inf{s1 > t1; H(s1) ≤ e(γ+ε0/2)s1}. Then H(t) > e(γ+ε0/2)t for any
t ∈ [t1, r1). Since H(t) is non-decreasing and H(t1) ≥ e(γ+ε0)t1 , the smallest possible
value for r1 is obtained in the case when the function H(t) is constant with value equal
to e(γ+ε0)t1 starting from t1 until it crosses the function e(γ+ε0/2)t . In this case, r1 = s∗

1
where e(γ+ε0/2)s∗

1 = e(γ+ε0)t1 . For a general non-decreasing function H, r1 ≥ s∗
1 .

Hence,

H(t)1{t∈[t1,s∗
1 ]} ≥ e(γ+ε0/2)t11{t∈[t1,s∗

1 ]}, with s∗
1 =

(

1 + ε0

2γ + ε0

)

t1.

We now select t2 such that t2 > s∗
1 and t2 ≥ t1. In the same way, we have that

H(t)1{t∈[t2,s∗
2 ]} ≥ e(γ+ε0/2)t21{t∈[t2,s∗

2 ]}, with s2 =
(

1 + ε0

2γ + ε0

)

t2.

In this way, we can find a sequence of disjoint nonempty intervals {[tn, s∗
n ]}n≥1 such

that

H(t)1{t∈[tn ,s∗
n ]} ≥ e(γ+ε0/2)tn1{t∈[tn ,s∗

n ]}, with s∗
n =

(

1 + ε0

2γ + ε0

)

tn,

for all n ≥ 1. Now we have that

∫ ∞

0
e−(γ+ε0/2)t H(t)dt ≥

∞∑

n=1

∫ s∗
n

tn
e−(γ+ε0/2)te(γ+ε0/2)tndt

=
∞∑

n=1

1

γ + ε0/2

(
1 − e−(γ+ε0/2)(s∗

n −tn)
)
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=
∞∑

n=1

1

γ + ε0/2

(

1 − e
−(γ+ε0/2)

ε0 tn
2γ+ε0

)

≥
∞∑

n=1

2

2γ + ε0

(

1 − e
−(γ+ε0/2)

ε0 t1
2γ+ε0

)

= ∞,

which contradicts with (A.1). This proves Lemma A.1. ��

Appendix B: Continuity of Jn in L p(�)

The following result is an extension of Proposition A.3 of [6] to higher dimensions d.

Proposition B.1 Fix (t, x) ∈ (0,∞) × R
d . Set

Bt,x :=
{
(
t ′, x ′) ∈ (0,∞) × R

d : 0 < t ′ ≤ t + 1

2
,
∣
∣x ′ − x

∣
∣ ≤ 1

}

Then there exists a = at,x > 0 such that for all
(
t ′, x ′) ∈ Bt,x and all s ∈ [0, t ′] and

y ∈ R
d with |y| ≥ a,

G(t ′ − s, x ′ − y) ≤ G(t + 1 − s, x − y) . (B.1)

Proof By direct calculation, we see that inequality (B.1) is equivalent to

d∑

i=1

(

− (x ′
i − yi )

2

t ′ − s
+ (xi − yi )

2

t + 1 − s

)

≤ d log

(
t ′ − s

t + 1 − s

)

, (B.2)

where x = (x1, . . . , xd), x ′ = (x ′
1, . . . , x ′

d) and y = (y1, . . . , yd).
We fix (t, x). In order to find a = at,x , we will freeze d − 1 coordinates. Because

− (x ′
i − yi )

2

t ′ − s
+ (xi − yi )

2

t + 1 − s
= − 1 + t − t ′

(1 + t − s)(t ′ − s)
(

y − x ′(1 + t − s) − x(t ′ − s)

1 + t − t ′

)2

+ (xi − x ′
i )
2

1 + t − t ′

≤ (xi − x ′
i )
2

1 + t − t ′
≤ 2(xi − x ′

i )
2 ≤ 2,

we have

d∑

i=1

(

− (x ′
i − yi )

2

t ′ − s
+ (xi − yi )

2

t + 1 − s

)

≤ 2(d − 1) +
(

− (x ′
j − y j )

2

t ′ − s
+ (x j − y j )

2

t + 1 − s

)

.
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for any index j = 1, . . . , d. Hence, inequality (B.2) holds, provided that there exists
an index j = 1, . . . , d such that

− (x ′
j − y j )

2

t ′ − s
+ (x j − y j )

2

t + 1 − s
≤ d log

(
t ′ − s

t + 1 − s

)

− 2(d − 1) . (B.3)

This shows that condition (B.2) holds, if for some index j = 1, . . . , d, we have:

− (x ′
j − y j )

2

t ′ − s
+ (x j − y j )

2

t + 1 − s
≤ 2d log

(
t ′ − s

t + 1 − s

)

, (B.4)

and

− (x ′
j − y j )

2

t ′ − s
+ (x j − y j )

2

t + 1 − s
≤ −4(d − 1). (B.5)

By Proposition A.3 of [6], there exists a constant a1 = a1,t,x > 0 such that (B.4)
and (B.5) hold for any (t ′, x ′

j ) with 0 < t ′ ≤ t + 1/2 and |x ′
j − x j | ≤ 1, and for any

y j ∈ R with |y j | > a1.
Let a := a1

√
d. Note that {y ∈ R

d : |y| ≥ a} ⊂⋃d
j=1 B j , where

B j =
{

y = (y1, . . . , yd) ∈ R
d : |y j | ≥ a1

}
, j = 1, . . . , d.

Therefore, for any y ∈ R
d with |y| ≥ a, there exists an index j = 1, . . . , d such that

|y j | ≥ a1. As we have shown above, this means that condition (B.2) holds for this y,
for any (t ′, x ′) ∈ Bt,x . ��
Lemma B.2 J0 is continuous on (0,∞) × R

d .

Proof Fix t > 0 and x ∈ R
d . By the definition of J0, we have:

|J0(t, x) − J0(t
′, x ′)| ≤

∫

Rd
|G(t, x − y) − G(t ′, x ′ − y)| |u0|(dy) =: L(t, t ′, x, x ′).

We claim that:
lim

(t ′,x ′)→(t,x)
L(t, t ′, x, x ′) = 0. (B.6)

To see this, we write L(t, t ′, x, x ′) = L1(t, t ′, x, x ′) + L2(t, t ′, x, x ′) where

L1(t, t ′, x, x ′) =
∫

|y|≥a
|G(t, x − y) − G(t ′, x ′ − y)| |u0|(dy), and

L2(t, t ′, x, x ′) =
∫

|y|<a
|G(t, x − y) − G(t ′, x ′ − y)| |u0|(dy),

and a = at,x is the constant given by Proposition B.1. By enlarging a if necessary, we
may assume that t > 1/a. By the dominated convergence theorem and the continuity
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of the function G, we see that Li (t, t ′, x, x ′) → 0 when (t ′, x ′) → (t, x), for i = 1, 2.
To justify the application of this theorem, we argue as follows. For L1(t, t ′, x, x ′),
we use Proposition B.1 to infer that for any (t ′, x ′) ∈ Bt,x and for any y ∈ R

d with
|y| ≥ a, we have:

|G(t, x − y) − G(t ′, x ′ − y)| ≤ 2G(t + 1, x − y).

For L2(t, t ′, x, x ′), we use the fact that for any t ′ > 1/a, x ′ ∈ R
d and y ∈ R

d with
|y| ≤ a,

G(t ′, x ′ − y)

G(t, x − y)
=

√
t√
t ′
exp

(

− (x ′ − y)2

2t ′
+ (x − y)2

2t

)

≤
√

t√
1/a

exp

( |x |2 + |a|2
t

)

=: Ct,x ,

and hence |G(t ′, x ′ − y) − G(t, x − y)| ≤ (Ct,x + 1)G(t, x − y). ��

Lemma B.3 For any p ≥ 2 and n ≥ 1, Jn is L p(�)-continuous on (0,∞) × R
d .

Proof We proceed as in the proof of Lemma 3.6 of [2]. We divide the proof in three
steps.

Step 1. (right-continuity in time) We will prove that for any t > 0 and a > 0,

lim
h↓0 ‖Jn(t + h, x) − Jn(t, x)‖p = 0 uniformly in x ∈ [−a, a]d . (B.7)

For any h > 0, we have:

‖Jn(t + h, x) − Jn(t, x)‖2p ≤ (p − 1)n‖Jn(t + h, x) − Jn(t, x)‖22
= (p − 1)nn! ‖ f̃n(·, t + h, x) − f̃n(·, t, x)‖2H⊗n

≤ 2

n! (An(t, x, h) + Bn(t, x, h)) , (B.8)

where

An(t, x, h) = (n!)2‖ f̃n(·, t + h, x)1[0,t]n − f̃n(·, t, x)‖2H⊗n , (B.9)

Bn(t, x, h) = (n!)2‖ f̃n(·, t + h, x)1[0,t+h]n\[0,t]n ‖2H⊗n . (B.10)

We evaluate An(t, h, x) first. We have:

An(t, h, x) =
∫

[0,t]2n

n∏

j=1

γ (t j − s j )ψ
(n)
t,h,x (t, s)dtds,
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where

ψ
(n)
t,h,x (t, s) = 1

(2π)nd

∫

Rnd
F(g(n)

t,t+h,x − g(n)
t,t,x )(ξ1, . . . , ξn)

× F(g(n)
s,t+h,x − g(n)

s,t,x )(ξ1, . . . , ξn) μ(dξ1) . . . μ(dξn).

Similarly to (3.4), we have:

An(t, h, x) ≤ �n
t

∫

[0,t]n
ψ

(n)
t,h,x (t, t)dt = �n

t

∑

ρ∈Sn

∫

0<tρ(1)<···<tρ(n)<t
ψ

(n)
t,h,x (t, t)dt.

(B.11)
If tρ(1) < · · · < tρ(n) < t =: tρ(n+1), then by (3.5),

|F(g(n)
t,t+h,x − g(n)

t,t,x )(ξ1, . . . , ξn)|2

≤ λ2n J 2+(t, x)

n−1∏

k=1

exp

⎛

⎜
⎝− tρ(k+1) − tρ(k)

tρ(k)tρ(k+1)

∣
∣
∣
∣
∣
∣

k∑

j=1

tρ( j)ξρ( j)

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

exp

⎛

⎜
⎝−1

2

t + h − tρ(n)

tρ(n)(t + h)

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠− exp

⎛

⎜
⎝−1

2

t − tρ(n)

tρ(n)t

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

2

= λ2n J 2+(t, x)

n∏

k=1

exp

⎛

⎜
⎝− tρ(k+1) − tρ(k)

tρ(k)tρ(k+1)

∣
∣
∣
∣
∣
∣

k∑

j=1

tρ( j)ξρ( j)

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

⎡

⎢
⎣1 − exp

⎛

⎜
⎝− h

2t (t + h)

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

⎤

⎥
⎦

2

,

and hence

ψ
(n)
t,h,x (t, t) ≤ �n

t J 2+(t, x)
1

(2π)nd

∫

Rnd

n∏

k=1

exp

⎛

⎜
⎝− tρ(k+1) − tρ(k)

tρ(k)tρ(k+1)

∣
∣
∣
∣
∣
∣

k∑

j=1

tρ( j)ξρ( j)

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

×
⎡

⎢
⎣1 − exp

⎛

⎜
⎝− h

2t (t + h)

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

⎤

⎥
⎦

2

μ(dξ1) . . . μn(dξn).

(B.12)
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Using (B.11) and (B.12), it follows that

An(t, h, x) ≤ �n
t λ2n J 2+(t, x)n! 1

(2π)nd

∫

0<t1<···<tn<t

∫

Rnd

n∏

k=1

exp

⎛

⎜
⎝− tk+1 − tk

tk tk+1

∣
∣
∣
∣
∣
∣

k∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

×
⎡

⎢
⎣1 − exp

⎛

⎜
⎝− h

2t (t + h)

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

⎤

⎥
⎦

2

μ(dξ1) . . . μ(dξn)dt1 . . . dtn, (B.13)

with the convention tn+1 = t . By the dominated convergence theorem and (3.20), we
conclude that

lim
h↓0 An(t, h, x) = 0 uniformly in x ∈ [−a, a]d . (B.14)

As for Bn(t, h, x), note that

Bn(t, h, x) =
∫

[0,t+h]2n

n∏

j=1

γ (t j − s j )γ
(n)
t,h,x (t, s)1Dt,h (t)1Dt,h (s)dtds,

where Dt,h = [0, t + h]n\[0, t]n and

γ
(n)
t,h,x (t, s) = 1

(2π)nd

∫

Rnd
Fg(n)

t,t+h,x (ξ1, . . . , ξn)

Fg(n)
s,t+h,x (ξ1, . . . , ξn)μ(dξ1) . . . μ(dξn).

Similarly to (46) of [2], it can be proved that

Bn(t, h, x) ≤ �n
t+h

∫

[0,t+h]n
γ

(n)
t,h,x (t, t)1Dt,h (t)dt. (B.15)

If tρ(1) < · · · < tρ(n) < t + h, then by (3.5),

|Fgt,t+h,x (ξ1, . . . , ξn)|2

≤ λ2n J 2+(t, x)

n−1∏

k=1

exp

⎛

⎜
⎝− tρ(k+1) − tρ(k)

tρ(k)tρ(k+1)

∣
∣
∣
∣
∣
∣

k∑

j=1

tρ( j)ξρ( j)

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

× exp

⎛

⎜
⎝− t + h − tρ(n)

(t + h)tρ(n)

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠ ,
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and hence, by Lemma 3.4

γ
(n)
t,h,x (t, t) ≤ λ2n J 2+(t, x)

1

(2π)nd

∫

Rnd

n−1∏

k=1

exp

⎛

⎜
⎝− tρ(k+1) − tρ(k)

tρ(k)tρ(k+1)

∣
∣
∣
∣
∣
∣

k∑

j=1

tρ( j)ξρ( j)

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

× exp

⎛

⎜
⎝− t + h − tρ(n)

(t + h)tρ(n)

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠μ(dξ1) . . . μn(dξn)

≤ λ2n J 2+(t, x)
1

(2π)nd

n−1∏

k=1

∫

Rd
exp

(

− tρ(k+1) − tρ(k)

tρ(k)tρ(k+1)

∣
∣tρ(k)ξk

∣
∣2
)

μ(dξk)

×
∫

Rd
exp

(

− t + h − tρ(n)

(t + h)tρ(n)

∣
∣tρ(n)ξn

∣
∣2
)

μ(dξn). (B.16)

Using relations (B.15) and (B.16), and the fact that

Dt,h =
⋃

ρ∈Sn

{(t1, . . . , tn); 0 < tρ(1) < · · · < tρ(n) < t + h, tρ(n) > t},

we obtain that

Bn(t, h, x) ≤ �n
t+h

∑

ρ∈Sn

∫ t+h

t

∫

0<tρ(1)<···<tρ(n−1)<tρ(n)

γ
(n)
t,h,x (t, t)dtρ(1) . . . dtρ(n−1)dtρ(n)

≤ �n
t+hλ2n J 2+(t, x)n! 1

(2π)nd

∫ t+h

t

∫

0<t1<···<tn−1<tn

n−1∏

k=1

∫

Rd
exp

(

− tk+1 − tk
tk tk+1

|tkξk |2
)

μ(dξk)

×
∫

Rd
exp

(

− t + h − tn
(t + h)tn

|tnξn|2
)

μ(dξn)dt1 . . . dtn−1dtn

= �n
t+hλ2n J 2+(t, x)n!

∫ t+h

t

∫

0<t1<···<tn−1<tn
J (n−1)

tn (t1, . . . , tn−1)k

(
2(t + h − tn)tn

t + h

)

dtn

≤ �n
t+hλ2n J 2+(t, x)n! 2n−1

∫ t+h

t
hn−1(tn)k

(
2(t + h − tn)tn

t + h

)

dtn

= �n
t+hλ2n J 2+(t, x)n! 2n−1

∫ h

0
hn−1(t + s)k

(
2(h − s)(t + s)

t + h

)

ds

≤ �n
t+hλ2n J 2+(t, x)n! 2n−1hn−1(t + h)

∫ h

0
k

(
2(h − s)t

t + h

)

ds (B.17)
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where the second last inequality is due to Lemma 3.6, and for the last inequality we
used the fact that hn−1 is non-decreasing and k is non-increasing. By the dominated
convergence theorem and (3.20), we infer that

lim
h↓0 Bn(t, h, x) = 0 uniformly in x ∈ [−a, a]d . (B.18)

Relation (B.7) follows from (B.8), (B.14) and (B.18).
Step 2. (left-continuity in time) We will prove that for any t > 0 and a > 0,

lim
h↓0 ‖Jn(t − h, x) − Jn(t, x)‖p = 0 uniformly in x ∈ [−a, a]d . (B.19)

For any h > 0, we have:

‖Jn(t − h, x) − Jn(t, x)‖2p ≤ (p − 1)n‖Jn(t − h, x) − Jn(t, x)‖22
= (p − 1)nn! ‖ f̃n(·, t − h, x) − f̃n(·, t, x)‖2H⊗n

≤ 2

n!
(

A′
n(t, x, h) + B ′

n(t, x, h)
)
, (B.20)

where

A′
n(t, x, h) = (n!)2‖ f̃n(·, t − h, x) − f̃n(·, t, x)1[0,t−h]n ‖2H⊗n , (B.21)

B ′
n(t, x, h) = (n!)2‖ f̃n(·, t, x)1[0,t]n\[0,t−h]n ‖2H⊗n . (B.22)

We evaluate A′
n(t, h, x) first. We have:

A′
n(t, h, x) =

∫

[0,t−h]2n

n∏

j=1

γ (t j − s j )ψ
(n)′
t,h,x (t, s)dtds,

where

ψ
(n)
t,h,x (t, s)

′ = 1

(2π)nd

∫

Rnd
F(g(n)

t,t,x − g(n)
t,t−h,x )(ξ1, . . . , ξn)

× F(g(n)
s,t,x − g(n)

s,t−h,x )(ξ1, . . . , ξn)μ(dξ1) . . . μ(dξn).

Similarly to (3.4), we have:

A′
n(t, h, x) ≤ �n

t−h

∫

[0,t−h]n
ψ

(n)′
t,h,x (t, t)dt

= �n
t−h

∑

ρ∈Sn

∫

0<tρ(1)<···<tρ(n)<t−h
ψ

(n)′
t,h,x (t, t)dt. (B.23)
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If tρ(1) < · · · < tρ(n) < t − h, then by (3.5),

|F(g(n)
t,t,x − g(n)

t,t−h,x )(ξ1, . . . , ξn)|2

≤ λ2n J 2+(t, x)

n−1∏

k=1

exp

⎛

⎜
⎝− tρ(k+1) − tρ(k)

tρ(k)tρ(k+1)

∣
∣
∣
∣
∣
∣

k∑

j=1

tρ( j)ξρ( j)

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

×

∣
∣
∣
∣
∣
∣
∣

exp

⎛

⎜
⎝−1

2

t − tρ(n)

t tρ(n)

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠− exp

⎛

⎜
⎝−1

2

t − h − tρ(n)

(t − h)tρ(n)

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

2

= λ2n J 2+(t, x)

n∏

k=1

exp

⎛

⎜
⎝− tρ(k+1) − tρ(k)

tρ(k)tρ(k+1)

∣
∣
∣
∣
∣
∣

k∑

j=1

tρ( j)ξρ( j)

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

× exp

⎛

⎜
⎝− t − h − tρ(n)

(t − h)tρ(n)

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

⎡

⎢
⎣1 − exp

⎛

⎜
⎝− h

2t (t − h)

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

⎤

⎥
⎦

2

,

and hence

ψ
(n)′
t,h,x (t, t) ≤ �n

t J 2+(t, x)
1

(2π)nd

∫

Rnd

n−1∏

k=1

exp

⎛

⎜
⎝− tρ(k+1) − tρ(k)

tρ(k)tρ(k+1)

∣
∣
∣
∣
∣
∣

k∑

j=1

tρ( j)ξρ( j)

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

× exp

⎛

⎜
⎝− t − h − tρ(n)

(t − h)tρ(n)

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

×
⎡

⎢
⎣1 − exp

⎛

⎜
⎝− h

2t (t − h)

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

⎤

⎥
⎦

2

μ(dξ1) . . . μn(dξn).

(B.24)

It follows that

A′
n(t, h, x) ≤ �n

t λ2n J 2+(t, x)n! 1

(2π)nd

∫

0<t1<···<tn<t−h

∫

Rnd

n−1∏

k=1

exp

⎛

⎜
⎝− tk+1 − tk

tk tk+1

∣
∣
∣
∣
∣
∣

k∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

× exp

⎛

⎜
⎝− t − h − tn

(t − h)tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠
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×
⎡

⎢
⎣1 − exp

⎛

⎜
⎝− h

2t (t − h)

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

⎤

⎥
⎦

2

μ(dξ1) . . . μ(dξn)dt1 . . . dtn, (B.25)

We will now prove that

lim
h↓0 A′

n(t, h, x) = 0 uniformly in x ∈ [−a, a]d . (B.26)

For this, we assume that h ∈ [0, t/2]. Notice that:

exp

⎛

⎜
⎝− t − h − tn

(t − h)tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

⎡

⎢
⎣1 − exp

⎛

⎜
⎝− h

2t (t − h)

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

⎤

⎥
⎦

2

≤ exp

⎛

⎜
⎝− t − h − tn

(t − h)tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠min

⎛

⎜
⎝

h

t2

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2

, 1

⎞

⎟
⎠ .

For this, we used the fact that (1− e−x )2 ≤ 1− e−x ≤ min(x, 1) for x > 0. Now we
move the exponential insidemin(. . .) and consider the two competing terms separately.
For A > 0 and x ≥ 0, we see that

exp

(

− A

2
x2
)

x2 = exp

(

− A

2
x2 + 2 log x

)

≤ (2/e)A−1. (B.27)

This can be seen by noticing that the function f (x) = − A
2 x2 + 2 log x, x > 0 attains

its maximum at x0 = √
2/A. Hence, inequality (B.27) implies that

exp

⎛

⎜
⎝− t − h − tn

(t − h)tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

h

t2

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2

≤ 2h

et2
(t − h)tn
t − h − tn

exp

⎛

⎜
⎝− t − h − tn

2(t − h)tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

≤ 2h

e(t − h − tn)
exp

⎛

⎜
⎝− t − h − tn

2(t − h)tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
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The second term is bounded by

exp

⎛

⎜
⎝− t − h − tn

(t − h)tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠ ≤ exp

⎛

⎜
⎝− t − h − tn

2(t − h)tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠ .

Therefore,

exp

⎛

⎜
⎝− t − h − tn

(t − h)tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠min

⎛

⎜
⎝

h

t2

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2

, 1

⎞

⎟
⎠

≤ exp

⎛

⎜
⎝− t − h − tn

2(t − h)tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠min

(
2h

e(t − h − tn)
, 1

)

.

Putting the above bounds back into the expression of A′
n(t, h, x), we see that

A′
n(t, h, x) ≤ �n

t λ2n J 2+(t, x)n! 1

(2π)nd

∫

0<t1<···<tn<t−h
dt1 . . . dtn

∫

Rnd
μ(dξ1) . . . μ(dξn)

×
n−1∏

k=1

exp

⎛

⎜
⎝− tk+1 − tk

2tk tk+1

∣
∣
∣
∣
∣
∣

k∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

× exp

⎛

⎜
⎝− t − h − tn

2(t − h)tn

∣
∣
∣
∣
∣
∣

n∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠min

(
2h

e(t − h − tn)
, 1

)

=: �n
t λ2n J 2+(t, x)n! A′′

n(t, h).

Relation (B.26) will follow from (3.20), once we prove that:

lim
h→0

A′′
n(t, h) = 0. (B.28)

We will use the fact that

1

2

tk+1 − tk
tk tk+1

∣
∣
∣
∣
∣
∣

k∑

j=1

t jξ j

∣
∣
∣
∣
∣
∣

2

=
tk+1
2 − tk

2
tk+1
2

tk
2

∣
∣
∣
∣
∣
∣

k∑

j=1

t j

2
ξ j

∣
∣
∣
∣
∣
∣

2

(B.29)

for any k = 1, . . . , n, with tn+1 = t − h. Using the change of variables t ′k = tk/2

for k = 1, . . . , n, and recalling the definition of the integral I (n)
t (t1, . . . , tn) given in
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Lemma 3.3, we see that

A′′
n(t, h) = 2n

∫

0<t1<···<tn< t−h
2

min

(
h

e( t−h
2 − tn)

, 1

)

I (n)
t−h
2

(t1, . . . , tn)dt1 . . . dtn

≤ 2n
∫

0<t1<···<tn< t−h
2

min

(
h

e( t−h
2 − tn)

, 1

)

J (n)
t−h
2

(t1, . . . , tn)dt1 . . . dtn

= 2n
∫ t−h

2

0
min

(
h

e( t−h
2 − tn)

, 1

)

k

(
2( t−h

2 − tn)tn
t−h
2

)

×
(∫

0<t1<···<tn−1<tn
J (n−1)

tn (t1, . . . , tn−1)dt1 . . . dtn−1

)

dtn

≤ 22n−1
∫ t−h

2

0
min

(
h

e( t−h
2 − s)

, 1

)

k

(
2( t−h

2 − s)s
t−h
2

)

hn−1(s)ds

≤ 22n
∫ t−h

2

0
min

(
h

es
, 1

)

k(s)hn−1(t − s)ds,

where the first inequality is due to Lemma 3.5, the second last inequality is due to
Lemma 3.6, and the last inequality can be proved similarly to (3.12). By the dom-
inated convergence theorem, the last integral converges to 0 as h → 0, because∫ t
0 k(s)hn−1(t − s)ds = hn(t) < ∞. This concludes the proof of (B.28).
As for B ′

n(t, h, x), note that

B ′
n(t, h, x) =

∫

[0,t]2n

n∏

j=1

γ (t j − s j )ψ
(n)
t,x (t, s)1D′

t,h
(t)1D′

t,h
(s)dtds,

where D′
t,h = [0, t]n\[0, t − h]n and ψ

(n)
t,x (t, s) is given by (3.2).

Similarly to (B.15), we have:

B ′
n(t, h, x) ≤ �n

t

∫

[0,t]n
ψ

(n)
t,x (t, t)1D′

t,h
(t)dt. (B.30)

Using Lemmas 3.2, 3.4 and 3.6, and the fact that

D′
t,h =

⋃

ρ∈Sn

{(t1, . . . , tn); 0 < tρ(1) < · · · < tρ(n) < t, tρ(n) > t − h},

we obtain that

B ′
n(t, h, x) ≤ �n

t

∑

ρ∈Sn

∫ t

t−h

∫

0<tρ(1)<···<tρ(n−1)<tρ(n)

ψ
(n)
t,x (t, t)dtρ(1) . . . dtρ(n−1)dtρ(n)

≤ �n
t λ2n J 2+(t, x)n! 1

(2π)(n−1)d

∫ t

t−h

∫

0<t1<···<tn−1<tn
dt1 . . . dtn−1dtn
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×
n−1∏

k=1

∫

Rd
exp

(

− tk+1 − tk
tk tk+1

|tkξk |2
)

μ(dξk)

×
(

1

(2π)d

∫

Rd
exp

(

− t − tn
tnt

|tnξn|2
)

μ(dξn)

)

= �n
t λ2n J 2+(t, x)n!

∫ t

t−h
dtn k

(
2(t − tn)tn

t

)

×
∫

0<t1<···<tn−1<tn
J (n−1)

tn (t1, . . . , tn−1)dt1 . . . dtn−1

≤ �n
t λ2n J 2+(t, x)n! 2n−1

∫ t

t−h
hn−1(tn)k

(
2(t − tn)tn

t

)

dtn

≤ �n
t λ2n J 2+(t, x)n! 2n−1hn−1(t)

∫ h

0
k

(
2s(t − s)

t

)

ds. (B.31)

By the dominated convergence theorem and (3.20), it follows that

lim
h↓0 B ′

n(t, h, x) = 0 uniformly in x ∈ [−a, a]d . (B.32)

Relation (B.19) follows from (B.20), (B.26) and (B.32).
Step 3. (continuity in space) We will prove that for any t > 0 and x ∈ R

d ,

lim|z|→0
‖Jn(t, x + z) − Jn(t, x)‖p = 0. (B.33)

For any z ∈ R
d , we have

‖Jn(t, x + z) − Jn(t, x)‖p ≤ (p − 1)n‖Jn(t, x + z) − Jn(t, x)‖22
= (p − 1)n 1

n! Cn(t, x, z), (B.34)

where

Cn(t, x, z) = (n!)2‖ f̃n(·, t, x + z) − f̃n(·, t, x)‖2H⊗n

=
∫

[0,t]2n

n∏

j=1

γ (t j − s j )ψ
(n)
t,x,z(t, s)dtds (B.35)

and

ψ
(n)
t,x,z(t, s) = 1

(2π)nd

∫

Rd
F(g(n)

t,t,x+z − g(n)
t,t,x )(ξ1, . . . , ξn)

× F(g(n)
s,t,x+z − g(n)

s,t,x )(ξ1, . . . , ξn)μ(dξ1) . . . μ(dξn).
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Similarly to the previous estimates, we have:

Cn(t, x, z) ≤ �n
t

∫

[0,t]n
ψ

(n)
t,x,z(t, t)dt = �n

t

∑

ρ∈Sn

∫

tρ(1)<···<tρ(n)

ψ
(n)
t,x,z(t, t)dt. (B.36)

If tρ(1) < · · · < tρ(n) < t = tρ(n+1), then by (3.5),

|F(g(n)
t,t,x+z − g(n)

t,t,x )(ξ1, . . . , ξn)|2

= λ2n
n∏

k=1

exp

⎛

⎜
⎝− tρ(k+1) − tρ(k)

tρ(k)tρ(k+1)

∣
∣
∣
∣
∣
∣

k∑

j=1

tρ( j)ξρ( j)

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

×
∣
∣
∣
∣
∣
exp

[

− i

t

(
n∑

k=1

tkξk

)

· (x + z)

]

∫

Rd
exp

{

−i

[
n∑

k=1

(

1 − tk
t

)

ξk

]

· x0

}

G(t, x + z − x0)u0(dx0)

− exp

[

− i

t

(
n∑

k=1

tkξk

)

· x

]

∫

Rd
exp

{

−i

[
n∑

k=1

(

1 − tk
t

)

ξk

]

· x0

}

G(t, x − x0)u0(dx0)

∣
∣
∣
∣
∣

2

.

Inside the squared modulus above, we add and subtract the term

exp

[

− i

t

(
n∑

k=1

tkξk

)

· x

]∫

Rd
exp

{

−i

[
n∑

k=1

(

1 − tk
t

)

ξk

]

· x0

}

G(t, x + z − x0)u0(dx0).

We obtain that

|F(g(n)
t,t,x+z − g(n)

t,t,x )(ξ1, . . . , ξn)|2

≤ 2λ2n
n∏

k=1

exp

⎛

⎜
⎝− tρ(k+1) − tρ(k)

tρ(k)tρ(k+1)
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tρ( j)ξρ( j)

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

×
⎧
⎨

⎩
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∣
∣
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∣
exp

[

− i

t

(
n∑

k=1

tkξk

)

· z

]

− 1

∣
∣
∣
∣
∣

2

J 2
0 (t, x + z) + F2(t, x, z)

⎫
⎬

⎭
,
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where

F(t, x, z) = L(t, t, x, x + z) =
∫

Rd
|G(t, x + z − x0)

−G(t, x − x0)| |u0|(dx0). (B.37)

Hence,

ψ
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t,x,z(t, t) ≤ 2λ2n 1

(2π)nd

∫

Rnd
μ(dξ1) . . . μ(dξn)

n∏
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∣
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− 1
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J 2
0 (t, x + z) + F2(t, x, z)

⎫
⎬
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.

Using (B.36), it follows that

Cn(t, x, z) ≤ 2
(

C (1)
n (t, x, z) + C (2)

n (t, x, z)
)

, (B.38)

where

C (1)
n (t, x, z) = �n

t λ2n J 2+(t, x + z)n! 1

(2π)nd

∫
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∫
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μ(dξ1) . . . μ(dξn)dt1 . . . dtn,

(B.39)

and

C (2)
n (t, x, z) = �n

t λ2n F2(t, x, z)n! 1

(2π)nd

∫

0<t1<···<tn<t

∫

Rnd
exp
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⎜
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tk tk+1
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⎞

⎟
⎠

× μ(dξ1) . . . μ(dξn)dt1 . . . dtn . (B.40)

123



J Theor Probab

By relation (B.6), lim|z|→0 J+(t, x + z) = J+(t, x). By the dominated convergence

theorem, lim|z|→0 C (1)
n (t, x, z) = 0. By (B.6), lim|z|→0 F(t, x, z) = 0, and hence

lim|z|→0 C (2)
n (t, x, z) = 0. Relation (B.33) follows from (B.34) and (B.38). ��
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